RS485总线可靠性提高方法及故障处理
4.RS485接口电路的电源、接地
对于由MCU结合RS485微系统组建的测控网络,应优先采用各微系统独立供电方案,最好不要采用一台大电源给微系统并联供电,同时电源线(交直流)不能与RS485信号线共用同一股多芯电缆。RS485信号线宜选用截面积0.75mm2以上双绞线而不是平直线。对于每个小容量直流电源选用线性电源LM7805比选用开关电源更合适,当然应注意LM7805的保护。
(1)LM7805输入端与地应跨接220~1000μF电解电容;
(2)LM7805输入端与输出端反接1N4007二极管;
(3)LM7805输出端与地应跨接470~1000μF电解电容和104pF独石电容并反接1N4007二极管;
(4)输入电压以8~10V为佳,最大允许范围为6.5~24V。可选用TI的PT5100替代LM7805,以实现9~38V的超宽电压输入。
5.光电隔离
在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。虽然RS485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无法正常工作了,严重时甚至会烧毁芯片和仪器设备。
解决此类问题的方法是通过DC-DC将系统电源和扁平型电感RS485收发器的电源隔离;通过光耦将信号隔离,彻底消除共模电压的影响。实现此方案的途径可分为:
(1)用光耦、带隔离的DC-DC、RS485芯片构筑电路;
(2)使用二次集成芯片,如PS1480、MAX1480等。
6.RS485系统的常见故障及处理方法
RS485是一种低成本、易操作的通信系统,但是绕行电感器稳定性弱同时相互牵制性强,通常有一个节点出现故障会导致系统整体或局部的瘫痪,而且又难以判断。故向读者介绍一些维护RS485的常用方法。
(1)若出现系统完全瘫痪,大多因为某节点芯片的VA、VB被电源击穿,使用万用表测VA、VB间差模电压为零,而对地的共模电压大于3V,此时可通过测共模电压大小来排查,共模电压越大说明离故障点越近,反之越远。
(2)总线连续几个节点不能正常工作。一般是由其中的一个节点故障导致的。一一体电感个节点故障会导致邻近的2~3个节点(一般为后续)无法通信,因此将其逐一与总线脱离,如某节点脱离后总线能恢复正常,说明该节点故障。
(3)集中供电的RS485系统在上电时常常出现部分节点不正常,但每次又不完全一样。这是由于对RS485的收发控制端TC设计不合理,造成微系统上电时节点收发状态混乱从而导致总线堵塞。改进的方法是将各微系统加装电源开关然后分别上电。
(4)系统基本正常但偶尔会出现通信失败。一般是由于网络施工不合理导致系统可靠性处于临界电感器国家标准状态,最好改变走线或增加中继模块。应急方法之一是将出现失败的节点更换成性能更优异的芯片。
(5)因MCU故障导致TC端处于长发状态而将总线拉死一片。提醒读者不要忘记对TC端的检查,尽管RS485规定差模电压大于200mV即能正常工作。但实际测量:一个运行良好的系统其差模电压一般在1.2V左工字电感器右(因网络分布、速率的差异有可能使差模电压在0.8~1.5V范围内)。
平面变压器厂家 | 平面电感厂家CCM,DCM环路我们在设计反激变压器时,通常设置变压器在低压输入,重载时进入连续模式,轻载时进入断续模式。小弟想请问下大神们,那相应的环路是应该按照连续模式设计还是断续模式设计??还是说可
微处理器的电源管理方案随着领先微处理器的每一代后续产品对电流的需求不断提高,为了使功耗保持在可管理的水平,就需要把工作电压降至更低。同时,这些高电流水平带来极大的电流变化率(di/dt),因而使电压调节(即稳压)也变得更加
基于麦克风技术的通信产品设计持产品结构的空间限制越来越多,扬声器越来越小,要求的声音越来越大,抑制各种各样的噪声和回声(视频免提通话时的线性、非线性回声),在噪声环境下实现清晰的语音通信,是一个面临解决的问题。美国富迪科技(Fo