技术提升助LED室内照明发展
UCSB小组正在着手研究基于衬底材料非极性面和半极性面上生长LED量子阱,并以此技术来提升LED量子效率。就目前进展而言,他们已成功将在半极性面上生长出来单量子阱,其黄色LED外量子效率提高到1314%。随着该工艺的不断成熟,LED量子效率将会得到进一步的提升,LED芯片的发光效率也有望进一步提高。
3 提升关键之二———封装技术
3.1 单芯片封装
单芯片封装是封装技术中采用最多的形式之一。略去多芯片封装需要顾及到更多的散热和电极分布方面的问题,该封装技术瓶颈主要在于芯片的成品率、色温控制以及荧光粉的涂布工艺。
目前就大功率LED芯片技常用电感器术而言,主要还是掌握在国外厂商之中。国内厂商虽然起步比较晚,在小功率芯片上已经取得一些进步,大功率芯片上在良率和效率上还需要作进一步完善。
表3是目前美国CREE公司推出的一款大功率器件,该器件一方面使用了硅胶透镜,避免了使用传统环氧树脂封装后由于高温产生黄化等引起的光衰问题;另一方面,陶瓷碗杯的设计增加了产品的散热性能,使产品的热阻控制在9℃/W;另外荧光粉的特定配制使其产品覆盖了冷白、中性白和暖白全系列色温。该器件是迄今能量产的体积较小的大功率LED器件,采用的单贴片电感芯片封装结构简单、易于散热、容易配光、色温容易控制。
3.2 芯片集成封装
多芯片集成塑封电感器件是目前大功率LED器件最为常见的另一种封装形式,可以分为小功率芯片集成器件和大功率芯片集成器件两类,前者以6个低功率芯片集成的1W大功率LED器件最为典型。国际上该类型器件具体性能可达到以下规格:半功率角120°,驱动电流300mA,标准电压318V和可达80lm的标准光通输出。该类器件的主要优势在于以较低的采购成本来获得单芯片大功率器件的光通量。大功率芯片集成器件以CREE公司最新推出的MC系列为代表(见表4),内含四个大功率芯片,通过优化设计,可以使最终的产品热阻控制在3℃/W,同时可以驱动高达10W的高功率,它的出现使得替代一些高端室内照明设施成为可能。该封装形式的主要难点是由于芯片间的差异性而引起的配光、老化、色度均匀性等难以控制。
3.3 ChiponBoard(COB)封装
该技术沿用传统半导体工艺,即直接将LED芯片直接固晶在PCB板上。利用该技术,目前已有厂商能使LED模组作到013mm以下的厚度,同时由于LED芯片直接与PCB板连接,增加了导热面积,散热问题也可以得到解决。目前此封装形式多以小功率芯片为主,器件效率可作到70lm/W(20mA)以上。不足之处在于还存在一些技术壁垒,目前能量产化的不多。
4 提升关键之三———灯具技术
4.1 散热技术
灯具的寿命一直是大家所关注的主要问题之一。一个好的灯具散热系统光靠低热阻的LED器件是远远不够的,它必须有效降低pn结到环境的热阻,以此尽可能降低LED的pn结结温来提高整个LED灯具的寿命。跟传统光源不同的是,PCB板既是LED的供电载体,也是散热载体,所以PCB的散热设计(包括布线、焊盘大小等)尤为重要。
4.2 光学设计
LED是点光源,又有方向性。利用好LED的这两个特性是灯具光学设计的关键。通过LED点阵的设计和二次光学的设计,LED灯具可以达电感器生产厂家到比较理想的配光曲线。例如在整体照明中,要求灯具的照射面比较大,可以使用线性LED灯条配以导光板等技术使之成为面光源,既提高均匀度又可防止眩光的发生。一些辅助照明、层次照明中则需要一定的聚光效果,以突出被照物体,主要可以选择配一些聚光透镜来达到光电感器生产厂家学要求。除以上因素,色温、辉度、显色指数也是室内照明设计考虑的重点,目前通过LED芯片和荧光粉的改良,LED灯具的显色指数可达95[16]。
平面变压器厂家 | 平面电感厂家
电磁兼容与电路保护 便携式电子设备的尺寸日趋小巧纤薄,越来越多的新功能或新特性不断被集成到设备中,使得便携设备的数据率及时钟频率越来越高。与此同时,便携设备必将面临着诸多潜在的电磁干扰(EMI)/射频干扰(RFI)源的 Proteus的定位系统仿真设计引 言随着单片机技术在工控领域及社会生活的各个方面得到广泛应用,对单片机开发成本及速度的要求也越来越高。按照传统的模式,在整个项目开发过程中,先根据控制系统要求设计原理图,制作硬件电路;然后进行软件编 CD磨机求助之前换了奔驰S卡曼哈顿,加装了漫步者4分频高音头。 雷凌先锋CD原功放东芝PA2032A 换了7850。原车原机电容3300UF,换四个1500UF 一个BBC104 0.1并联。 改后感觉低音浑厚了一