如何为CCFL和LED背光供电
图中C部分提供LED开/关及调光控制。+ENABLE输入控制背光的开/关,+PW脉宽调节斩波驱动器的导通与截止,以实现调光。该设计可以实现得相当紧凑(见图4)。
扁平型电感散热考虑
LCD工作时的环境温度是背光驱动器设计人员需要考虑的一个关键因素。CCFL启动或起始电压与温度成反比。图5a显示了CCFL起始电压与温度之间的典型关系,图5b则展示了与电灯电流增大相关的CCFL亮度变化曲线。
CCFL达到规定亮度所需的时间也与温度成反比。对于要求亮度快速增加的任务关键型应用,可能需要逆变器在短时间内提供较高的升压电流,以增强CCFL的预热性能,并加快达到所要求亮度的时间。不过,虽然较高的CCFL电流有利于灯的预热,但持续的高电流会使灯处于饱和状态,这还会导致亮度下降以及灯的温度上升,同时缩短灯的寿命。对于大多数CCFL而言,灯的额定电流应在3mA~8mA(均方根)的范围内。
LED背光对低温不敏感。低温下LED电气特性及导通时间的微小变化无需对驱动器设计作任何特殊考虑。
高温也会影响驱动器的设计。实际上,高温对CCFL驱动器功能和可靠性的影响比其它所有变化因素都要显著。
对CCFL驱动器来说,变压器中铜和磁芯的损耗可能会构成一个很大的热源。变压器通常工作在超过现场环境温度约30?C的温度下。通过调整CCFL的驱动器设计,可以将铜和磁芯的损耗降至最低,从而维持电路中的电压和电流值。
高温对LED背光而言也很重要。不过,此时考虑的重点是LED自身的温度,而不是驱动元件的温度。近年来LED技术、封装及材料的进步极大地提高了LED 亮度。LED背光的难点将是如何将LED差模电感器件自身的热量散发出去,然后散发显示装置上的热量。设计的关键是保持LED结温低于100?C以确保可靠性。
调光控制
要求宽亮度范围的LCD应用正日益增长。驱动器必须能够分别为明视及夜视提供高亮度和低亮度。亮度控制必须在这一宽范围内平滑变化,并且不产生闪烁。
CCFL背光的模拟调光是通过调节驱动器输出电流来改变灯的亮度,可实现约为30%满亮度的粗调,但这无法为大多数应用提供足够的动态范围。此外,模拟调光会增加振荡器晶体管负担并降低逆变器的可靠性。
PWM调光极大地改善了调光控制。在这种类型的调光控制中,CCFL或LED以固定频率脉冲导通和截止,并通过调节占空比改变亮度。通常,在100至 500Hz电感器的功能频率之间调节CCFL背光。CCFL背光(带有4个或更多灯)的低亮度控制可通过选择性控制技术来提高,利用这一技术,灯会随着亮度的降低而依次熄灭。
此外,调节LED背光的最佳方法是利用PWM调光。采用LED背光可获得更宽的调光率,因为LED的基本开关时间可以以纳秒度量,而CCFL则需以毫秒度量。
输入电压
虽然应用可以支持5至48V的直流电,但流经大多数LCD背光驱动器的为12V直流输入。CCFL控制环可能为开环或闭环。开环设计需要稳压输入电源,因为起始电压和输出电流随输入电压而变化。闭环CCFL驱动器在整个输大电流电感入电压范围内都可以提供恒定的起始电压和电流。因此,闭环在不需要对输入进行稳压的应用中更受欢迎,通常
电池供电应用就属于这一类。
对于LED驱动器而言,VCC必须大于为LED串和感测电阻供电所需的最小一体成型电感器值。DC-DC升压变换器必须采用闭环控制,以便在无负载或满负载条件下都能提供相对稳定的VCC。
虽然LCD的CCFL背光与LED背光之间有很多显著差异,但驱动器设计人员必须遵从某些相似性和基本原理,包括考虑背光的环境温度,还应特别注意CCFL的低温情况及LED的高温情况。
由于高压问题,CCFL背光所面临的关键挑战涉及CCFL封装及驱动器布局;由于热管理,LED背光面临的关键挑战则围绕负载器件的封装。与模拟调光不同,上述两种技术都可很好地利用PWM。本文虽然重点讨论一些主要的考虑,但其它因素(如专用要求、成本控制、可制造性及可靠性)在优化驱动器设计时也必须考虑。平面变压器厂家 | 平面电感厂家
如何设计高效率大电流直流稳压电源许多电子发烧友们在DIY时,常常需要一个能输出大电流、性能优良的直流稳压电源,并且希望这个直流稳压电源还能够比较方便的根据自己的需要随时改变输出电压的大小。如何才能拥有一款这样的直流稳压电源呢。本文介
寻DC-DC小功率电源模块输入电压范围140 ~ 390VDC(即对应交流100~275VAC经过整流滤波后的电压值),额定电压经常要么为150VDC,要么为300VDC,输出为12V,对应的负载是一个大功率继电器,这个继电器有如下特点:
有没有10A的LOW VF的整流桥推荐的?今天查了下,一般的整流桥在常温下的10A时的VF是1~1.05V左右,新电元的LOW VF产品只有15A以上的,其他家有没有更低的VF整流桥推荐下,谢谢。
据网友说可以用无桥的解决
功