您现在的位置:首页 > 案例分析案例分析

推挽全桥双向直流变换器的研究

发布时间:2015-11-13 09:28:49  来源:大电流电感厂家   查看:

1 引言

随着环境污染的日益严重和新能源的开发,双向直流变换器得到了越来越广泛的应用,像直流不停电电源系统,航天电源系统、电动汽车等场合都应用到了双向直流变换器。越来越多的双向直流变换器拓扑也被提出,不隔离的双向直流变换器有Bi Buck/Boost、Bi Buck-Boost、Bi Cuk、 Bi Sepic-Zeta;隔离式的双向直流变换器有正激、反激、推挽和桥式等拓扑结构。不同的拓扑对应于不同的应用场合,各有其优缺点。推挽全桥双向直流变换器是由全桥拓扑加全波整流演变而来。推挽侧为电流型,输入由蓄电池供给,全桥侧为电压型,输入接在直流高压母线上。此双向直流变换器拓扑适用在电压传输比较大、传输功率较高的场合。

本文分析了推挽全桥双向直流变换器的工作原理,通过两种工作模式的分析,理论上证明了此拓扑实现能量双向流动的可行性,并对推挽侧开关管上电压尖峰形成原因进行了分析,提出了解决方法,在文章的最后给出了仿真波形和实验波形。

2 工作原理

图1为推挽全桥双插件电感向DC/DC变换器原理图。图2给出了该变换器的主要波形。变换器原副边的电气隔离是通过变压器来实现的,原边为电流型推挽电路,副边为全桥电路,该变换器有两种工作模式:(1)升压模式:在这种工作模式下S1 、S2 作为开关管工作; S3,S4 ,S5 ,S6 作为同步整流管工作,整流方式为全桥整流,这种整流方式适用于输出电压比较高,输出电流比较小的场合。由于电感L 的存在 S1、S2 的占空比电感器生产必须大于0.5。(2)降压模式:在这种工作模式下 S3, S4, S5,S6 作为开关管工作,S1 、S2 作为同步整流管工作,整流方式为全波整流。分析前,作出如下假设:

所有开关管、二极管均为理想器件;

所有电感、电容、变压器均为理想元件;

;

2.1 升压工作模式

在升压工作模式下,原边输入为电流型推挽电路,副边输出为全桥整流电路。S1 ,S2 作为开关管工作,S3 , S4, S5,S6 作为同步整流管工作。电感电流工作于连续模式。

推挽全桥双向直流变换器的研究

图1 推挽全桥双向DC/DC变换器

推挽全桥双向DC/DC变换器电路波形

图2推挽全桥双向DC/DC变换器电路波形

以一个开关周期 T为例:

2.2 降压工作模式

在降压工作模式下,输入为全桥电路,输出为全波整流电路。 S3, S4, S5,S6 作为开关管工作, S1, S2作为同步整流管工作。

以一个开关周期 T为例:

由此可见,当 与( , ); 与( , )互补工作时,输工字电感入输出电压关系是相同的,变换器具有很好的可逆性。

3 缓冲电路

推挽全桥双向直流变换器推挽侧的两个开关管在关断时有较大的电压尖峰。这是由于电感 和漏感的存在。因为两管的占空比大于0.5,所以存在共同的导通时间,当这段时间结束关断其中一个开关管时,会引起很大的 ,形成较大的电压尖峰加在开关管上。而全桥侧由于是电压型且不存在短路问题,所以没有电压尖峰的问题。基于以上问题就需要采用合适的缓冲电路来缓解电压尖峰问题。

3.1 缓冲电路分析与选择

缓冲电路分为有损缓冲电路和无损缓冲电路两类,有损缓冲电路结构简单,便于设计参数,例如RCD缓冲电路;无损缓冲电路虽不会造成电路的损失,但一般结构复杂,参数设计不易,有时还会影响开关管的选择,例如LCD缓冲电路。基于以上原因,决定采用LCD有损缓冲电路。平面变压器厂家 | 平面电感厂家

服务器的冗余电源技术 冗余电源是高可用系统中关键的部分。在最简单的解决方案中,两只电源可以利用二极管来通过或门输出以驱动负载。这样,这两只电源既可以共同工作,也可以一只工作,一只备用。 场效应晶体管(FET) ORing

基于DSP控制的25Hz逆变电源抗负荷冲击策略摘要:提出了一种数字控制25Hz逆变器抗冲击负荷的保护策略,通过计算等效输出阻抗的方法,对逆变器起到了有效的保护作用。通过实验进行了验证,并给出了实验波形。关键词:逆变器;冲击负荷;数字信号处理器0

在测试系统中如何选择DC系统电源 通常认为,测试系统要求使用线性电源,因为线性电源具有输出噪声低、快输出响应等优势。但是,精心设计的开关电源同样会实现优异的性能,可以与优秀的线性电源相媲美。电子产品的竞争格局正在不断变化,特别是通信

CopyRight2014
大电流电感 | 大功率电感 | 扁平线圈电感 注塑加工厂