用神经网络控制的二象限开关电感DC/DC变换器
图7神经网络
图8节点函数
这是一非线性控制系统。由方程我们可以看出电阻R严重地影响了系统的稳定性和响应。
4.2反向传播神经网络(BPNN)方案
做少量的数学运算可以看出,对于一个恒定的电感电流,存在着一个相应的外加电压Vi。
可以把一个具有多输入和多输出的反向传播神经网络(BPNN)放置在输入端和输出端之间。经过分析,电流-功率控制采用三个神经元层次,分别是输入层(IL),隐含层(HL)和输出层(OL)。反向传播神经网络(BPNN)的结构如图7所示,它由三层组成,每层都含有大量的神经元。同一层的所有神经元的函数是相同的,而不同层的神经元函数不同。控制系统布局示意图如图6所示。
4.3结构描述
w1ij,w2ij和w3ij是输入层、隐含层和输出层神经元的权值;θij是n-维第i个元素的活化宽度;Pij是r-维第i个元素;λij是宽度矢量的第i个元素;ρij是m-维第i个活化值。
4.4自学习函数
由系统要求可知训练最佳极限是:
·电流响应超调量≤5%;
·功率响应超调量≤10%;
·波形摇摆≤2个周期。
所有神经元的加权系数都会影响输出参数的响应,加权系数由反向传播学习技术来确定以满足上述极限。在系统的设计中,神经网络每一神经元的所有权值必须被确定,通常称为训练过程。这里我们介绍一种自动调节技术来训练这些权值。
反向传播学习技术是以最小均方(LMS)运算为基础的,它是与斜率有关的搜索方法。学习过程可以从预置初始值开始,即将所有加权值(率)先设置为一个单位。当用这些权值得出的实际输出与目标之间差别最小时,学习过程才算完成。由于神经网络是一个规模不大的网,所以训练过程不需要很长时间即可完成。通常仅需要5∽15秒。
5实验结果
测试装备包括一个14V的电池作为负载和一个42V的直流源做电源。测试条件为:f=1∽5kHz,V1=42V和V2=-14V,L=0.3mH,R=3mΩ,体积=4000(in3),实测结果如表2所示。总的平均功率密度(PD)为27.8W/in3。这种电路的功率密度比经典变换器的功率密度要高得多。经典变换器的功率密度通常小于5W/in3。因为开关频率很低,所以电磁干扰(EMI)很弱。
6结论
人工神经网络控制技术已成功地应用在二象限开关电感DC/DC变换器中,它克服了当导通常占空k为临界值时所引起的系统运行不稳定的不足,从而获得一个平稳的能量传输过程。实验结果证实了我们的设计和反向传播神经网络(BPNN)技术的优点。
表2不同频率时的实测结果
L(mH) | R(mΩ) | f(kHz) | k | II(A) | IO(A) | IL(A) | PI(W) | PO(W) | η(%) | PD(W/in3) |
---|---|---|---|---|---|---|---|---|---|---|
0.3 | 3 | 1 | 0.3 | 280 | 653 | 933 | 11760 | 9146 | 77.7 | 绕行电感器2.58 |
0.3 | 3 | 1 | 0.4 | 1120 | 1680 | 2800 | 47040 | 23520 | 50 | 8.70 |
0.3 | 3 | 1 | 0.5 | 2333 | 2333 | 4666 | 98000 | 共模电感器32666 | 变压器电感器33.3 | 16.11 |
0.3 | 3 | 1 | 0.6 | 3920 | 2613 | 6533 | 164640 | 36586 | 22.2 | 24.81 |
0.3 | 3 | 1 | 0.7 | 5880 | 2520 | 8400 | 246960 | 35280 | 14.2 | 34.80 |
0.3 | 3 | 1 | 0.8 | 8213 | 2053 | 10266 | 344960 | 28746 | 8.3 | 46.08 |
0.3 | 3 | 1 | 0.9 | 10920 | 1213 | 12133 | 458640 | 16986 | 3.7 | 58.65 |
0.3 | 3 | 3 | 0.3 | 280 | 653 | 933 | 11760 | 9146 | 77.7 | 2.58 |
0.3 | 3 | 3 | 0.4 | 1120 | 1680 | 2800 | 47040 | 23520 | 50 | 8.70 |
0.3 | 3 | 3 | 0.5 | 2333 | 2333 | 4666 | 98000 | 32666 | 33.3 | 16.11 |
0.3 | 3 | 3 | 0.6 | 3920 | 2613 | 6533 | 164640 | 36586 | 22.2 | 24.81 |
0.3 | 3 | 3 | 0.7 | 5880 | 2520 | 8400 | 246960 | 35280 | 14.2 | 34.80 |
0.3 | 3 | 3 | 0.8 | 8213 | 2053 | 10266 | 344960 | 28746 | 8.3 | 46.08 |
0.3 | 3 | 3 | 0.9 | 10920 | 1213 | 12133 | 458640 | 16986 | 3.7 | 58.65 |
0.3 | 3 | 5 | 0.3 | 280 | 653 | 933 | 11760 | 9146 | 77.7 | 2.58 |
0.3 | 3 | 5 | 0.4 | 1120 | 1680 | 2800 | 47040 | 23520 | 50 | 8.70 |
0.3 | 3 | 5 | 0.5 | 2333 | 2333 | 4666 | 98000 | 32666 | 33.3 | 16.11 |
0.3 | 3 | 5 | 0.6 | 3920 | 2613 | 6533 | 164640 | 36586 | 22.2 | 24.81 |
0.3 | 3 | 5 | 0.7 | 5880 | 共模电感 一体成型电感器2520 | 8400 | 246960 | 35280 | 14.2 | 34.80 |
0.3 | 3 | 5 | 0.8 | 8213 | 2053 | 10266 | 344960 | 28746 | 8.3 | 46.08 |
0.3 | 3 | 5 | 0.9 | 10920 | 1213 | 12133 | 458640 | 16986 | 3.7 | 58.65 |
FPGA电源需求中三种供电要求解析方案目前越来越多的家用电器从低速的拨号上网向宽带互联网接入或互联网协议电视(IPTV)转移,尤其是IPTV有望在中国获得快速的发展。比较而言,IPTV的基础设施成本相当低,因为这种方法不需要铜轴电缆,而是
电磁兼容与电路保护 便携式电子设备的尺寸日趋小巧纤薄,越来越多的新功能或新特性不断被集成到设备中,使得便携设备的数据率及时钟频率越来越高。与此同时,便携设备必将面临着诸多潜在的电磁干扰(EMI)/射频干扰(RFI)源的
半桥拓扑结构高端MOSFET驱动方案选择:变压器还是在节能环保意识的鞭策及世界各地最新能效规范的推动下,提高能效已经成为业界共识。与反激、正激、双开关反激、双开关正激和全桥等硬开关技术相比,双电感加单电容(LLC)、有源钳位反激、有源钳位正激、非对称半