您现在的位置:首页 > 科技成果科技成果

电池供电系统中DC-DC升压调节器的应用

发布时间:2015-08-06 08:39:11  来源:大电流电感厂家   查看:

便携式电子器件(如智能手机、GPS导航系统和平板电脑)的电源可以来自低压太阳能电池板、电池或AC-DC电源。电池供电系统通常将电池串联叠置以实现更高的电压,但此技术由于空间不足未必总是可行。开关转换器使用电感磁场来交替存储电能,并以不同电压释放至负载。因为损耗很低,所以是个不错的高效选择。连接至转换器输出端的电容可降低输出电压纹波。本文所讨论的升压, 转换器提供较高电压;而之前所讨论的降压转换器提供较低输一体电感出电压。内置FET作为开关的开关转换器称为开关调节器,需一体电感器要外部FET的开关转换器则称为开关控制器。

  图1显示采用两节串联的AA电池供电的典型低功耗系统。电可用输出范围约为1.8 V至3.4 V,而IC工作时需要1.8 V和5.0 V 电压。升压转换器可在不增加电池单元数量的情况下提升电压,从而为WLED背光、微型硬盘驱动器、音频设备和USB外设供电,而降压转换器可为微处理器、内存和显示器供电。

图1.典型低功耗便携式系统

  电感阻碍电流变化的倾向可提供升压功能。充电时,电感用作负载并存储电能;放电时,可用作电源。放电过程中产生的电压与电0805电感流变化速率相关,与原始充电电压无关,因此可提供不同的输入和输出电平。

  升压调节器包括两个开关、两个电容和一个电感,如图2所示。非交叠开关驱动机制确保任一时间只有一个开关导通,避免发生不良的直通电流。在第1阶段(tON),开关B断开,开关A闭合。 ON电感连接到地,因此电流从VIN流到地。由于电感端为正电压,因此电流增大,使电能存储于电感中。在第2阶段(tOFF), 开关A断开,开关B闭合。电感连接到负载,因此电流从VIN流到负载。由于电感端为负电压,因此电流减小,电感中存储的能量释放到负载中。

降压转换器拓扑结构和工作波形

图2.降压转换器拓扑结构和工作波形

注意,开关调节器既可以连续工作,也可以断续工作以连续导通模式 (CCM), 工作时,电感电流不会降至0;以断续导通模式 (DCM), 工作时,电感电流可以降至0. 电流纹波,在图2中显示为ΔIL 使用公式ΔIL = (VIN × tON)/L.计算。平均电感电流流入负载,而纹波电流流入电感生产厂家输出电容。

升压调节器集成振荡器、PWM控制环路和开关FET

图3.升压调节器集成振荡器、PWM控制环路和开关FET

  使用肖特基二极管代替开关B电感器厂家的调节器定义为异步 (或非同步), 调节器,而使用FET作为开关B的调节器定义为同步调节器。 图3中,开关A和B已分别使用内部NFET和外部肖特基二极管来实施,从而形成异步升压调节器。对于需要负载隔离和低关断电流的低功耗应用,可添加外部FET,如图4所示。将器件的EN引脚驱动至0.3 V以下便可关断调节器,使输入与输出完全断开。

图4.ADP1612/ADP1613典型应用电路

  现代低功耗同步降压调节器以脉宽调制(PWM)为主要工作模式。PWM保持频率不变,通过改变脉冲宽度(tON)来调整输出电压。输送的平均功率与占空 D成正比,因此这是一种向负载提供功率的有效方式

  例如,所需输出电压为15 V,可用输入电压为5 V时:

  D = (15 – 5)/15 = 0.67 or 67%.

  由于功耗降低,输入功率必须等于传递至负载的功率减去所有损耗。假定转换十分有效,则少量的功率损失可在基本功耗计算中省略不计。因此输入电流可近似表示为:

平面变压器厂家 | 平面电感厂家

基于DSP数字摄像机技术发展作为DSP领先者的美国德州仪器公司(TI)在数字照相机应用方面同样独占鳌头。首先基于TMS320C54x通用平台上实现影像压缩,然后将影像前端处理的分立器件集成为一个专用芯片,进而把两者合二为一并集成

LED驱动原理设计及案例 本文首先介绍了特种照明的应用环境,然后,详细阐述了利用DC/DC稳压器实现恒压转恒流设计的基本原理和实际案例,并说明了大功率LED驱动器设计与散热部分设计应该注意的事项,最后指出了大功率LED新应用

基于单片机和PSD设计的数制化电源摘 要: 根据单片机80C196KC和现场可编程系统器件PSD302的特性,设计了一种数制化电源装置,提供了程序框图,并对其进行了谐波分析。它是一种高性能的通用装置,可替代传统的PWM逆变电源。 随着

CopyRight2014
大电流电感 | 大功率电感 | 扁平线圈电感 注塑加工厂