新型微波炉电源中ZVS高频变换器的设计及实现
新型微波炉电源与目前国内所用的微波炉电源相比,效率较高,损耗较小,在当前节能减排要求日益迫切的情况下有着其明显的意义。ZVS高频变换器模压电感是新型微波炉电源中的核心部分,其主要的原理是通过实现软开关使得开关损耗大为减小,提高工作频率,达到使电源小型化,高传输效率的目的。对于如何设计谐振变换的参数,来实现软开关,并达到规定的输入输出要求,是个很重要的方面。本文介绍了一种计算谐振变换器中关键的谐振电容和电感的计算方法,并对电路的其他参数进行了设计。并在此基础上做了仿真。最后试制出了一台样机,实验结果符合要求。
l ZVS高频变换器的工作原理
应用于新型微波炉电源的ZVS高频变换器的原理图如图1所示。采用IGBT作为开关管,其驱动信号采用固定占空比为接近0.5的互补信号(有一定的死区时间),电路主要由滤波电路、ZVS高频变换器和桥式倍压整流电路组成。滤波电路由整流桥D,平波电感Ld和滤波电容Cd1、Cd2组成,将输入的交流变成直流。高频变换器中Lr为谐振电感。在这个电路中假设变压器的激磁电感足够大,激磁电流是一个常数。Cr为谐振电容。VTl,VT2为开关管,VDl、VD2分别为VTl、VT2内置续流二极管。在实际的电路设计中,为抑制开关管的过电压、du/dt或者过电流和di/dt,减小器件的开关损耗,需要加入吸收缓冲电路。C1为VT1的缓冲吸收电容,C2和尺并联组成VT2的吸收缓冲电路。由于吸收电容和开关管相并联,它对Lr和Cr组成的谐振电路没有很大影响,但是其两端电压会随着换流过程的变化而变化,也会随着谐振的过程进行充电和放电,因此电容的值不能选得很大,要保证电容的充放电的时间在死区的范围内,符合共模电感器换流的要求。倍压整流电路如图中所示,采用桥式倍压整流电路。
ZVS高频变换器的主要工作模态如图2所示,主要依靠电容和电感之间能量的传递,实现二极管的续流,给开关管的开通创造ZVS条件。
2 具体的设计步骤
由于微波炉所带负载为磁控管,磁控管的电压一电流特性如图3所示,其稳态正常工作电压约为4 000V,当电压低于其正常工作电压时,磁控管呈高阻抗状态,电流随电压的变化不大,处于非振荡区域,当电压高于4 0可调电感00V时,磁控管呈现低阻抗状态,电流随电压的变化较之前强烈,处于振荡区域。启动磁控管需要一定的预热时间,其启动电压要远大于门槛电压,需要5 000V以上,磁控管工作以后,电压会下降成为一定值,这个值要求比门槛电压要高,以保证磁控管的稳定运行。
在本设计中,由于磁控管可以看做是电阻负载,而很难设置符合其前后两段的特性的负载。所以采用一个电阻负载来模拟磁控管,只要电源能输出一个合适的电压,合理的调配参数可以实现驱动磁控管。
用电阻负载模拟实现的设计参数如下:交流输入电压:220V/50Hz;输出电压:5 200V;输出功率:550W。
2.1 确定变换器的直流电压增益和选取频率
由于VT1和VT2互补导通,所以在开关管的集电极一发射极之间形成一方波电压。可以近似得到交流等效电路进一步可以将变压器二次侧等效为交流电阻Rac。等效电路如电感厂家图4所示。
由等效电路得:直流电压增益
为了实现ZVS,要求谐振回路部分的阻抗呈感性,这样才能利用二极管的续流作用,为ZVS提供条件。这样,要求实际的频率ω>ω0,即m>1。
通过MATLAB绘制不同Q值条件下G的曲线图,如图5所示:
图中横坐标为m,即实际运行频率和谐振频率的比值,由图可得,在一个固定的频率值下,Q越小,直流增益就越大。同时也说明随着负载的减小,直流电压增益会变小,当变压器设计好以后,变比一定,负载减小平面变压器厂家 | 平面电感厂家
用一个电源芯片为LCD 提供多电源解决方案近几年,LCD液晶显示屏幕不再仅限於在原来的中高档的产品上使用,而在手机和一些便携掌上游戏机上也越来越多的被普及。随着LCD在低端产品上的广泛使用,为这些产品提供一个低价位的LCD电源方案也就显得非常
新颖小功率集成的AC-DC转换器方案介绍随着半导体技术的不断进步,为系统设计师、电路设计师实现技术创新提供了一个先进的技术平台,从而有许许多多新颖的、时尚的便携式电子产品呈现在世人面前,像PDA、3G手机、各种个人电子医疗保健装置以及层出不
高耐压PWM三端开关电源最简单的5V/5W开关电源实际电路如图所示。图中TOP210IC1)为三端PWM开关。IC1中含有PWM控制器,功率MOSFET和各种保护电路。这种5V/5W开关电源的成本比常用的线性电源成本低。该电