Buck变换器的数字模糊PID控制
图4Buck变换器模糊PID闭环控制框图
图5Buck变换器模糊PID控制框图
出,系统开环的频率特性较差,采用PID控制后,不仅改善了系统的相角裕度,同时也降低了系统在低频时的增益。应用模糊控制对PID参数Kp、Ki、Kd实时地进行整定,则能改善PID的控制性能、自调整能力,从而可提高整个系统的控制精度和抗干扰能力。
3.1控制电路设计系统的闭环控制框图如图4所电感生产示。取输出电压的误差和微分量,送入模糊控制器和PID控制器,由模糊控制器根据输入控制量偏差实时给出PID的参数,再由PID控制器给出控制信号,从而实现对变换器的精确控制。取输入电压的误差送入系统前馈校正电路中,输出补偿量加入到模糊PID控制输出量,和一起组成变换器的占空比控制量d。图中:Uref2、Uref1分别为输入和输出参考电压;采用上一周期的输功率电感出占空比值,而不用静态值D,这样可确保系统的平滑性和稳定性;M(s)为模电感器生产厂家糊PID控制器的传递函数;G2(s)为前馈补偿函数。
3.2PID参数的整定
对于线性系统,PID参数的整定方法有多种,如:
1)ZieglerNichols频率响应法[2];
2)Cohencoon响应曲线法[3];
3)基于积分平方准则ISE整定法[4];
4)极点配置法;
5)根轨迹法;
6)工程整定法等等。
实际上,DC/DC变换器为一非线性系统,而PID控制只适用于线性系统或有限范围波动的非线性系统,用一组事先整定好的PID参数,难以达到很好的控制效果,故其适用范围有限。为提高PID控制系统的控制性能和适用范围,必须根据偏差实时地改变Kp、Ki、Kd这三个参数,即实时调节PID控制器的增益。其控制框图如图5所示。
首先可由DC/DC变换器静态模型,依据上述线性PID参数整定法,得到较优的Kp,Ki和Kd静态PID参数值。模糊控制器依据偏差对应每一量化等级,都可得到相对应范围内较优的Kp′,Ki′和Kd′瞬时值。
一般来说Kp′在偏差e绝对值较小时取较小值,反之功率电感器取较大值,这样有利于加快响应速度,同时保证有很好的稳太诱电感定性;Ki′在偏差e绝对值较小时取较大值,反之取较小值,这样既有利于保证稳态无静差,又不会引起积分饱和而使超调增大、调节时间延长;微分系数Kd′在偏差e的绝对值较小时取较大值,反之取较小值,这样有利于加快对小偏差的反应速度,提高控制器对干扰的灵敏度,在出现干扰时可及时调节。
4仿真及实验结果
本控制系统实验采用TMS320F240型DSP,输入交流电压为110~250V,输出为直流10V,频率为60kHz,L=120μH,C=960μF,带电阻性负载。应用PSPICE对本系统进行了仿真,仿真结果如下图6所示。实验结果如图7所示,在t=0.035s时,系统受到输入电压的阶跃干扰。由仿真和试验结果可知,模糊PID控制具有较满意的控制效果和较快的动态性能。 5结语
本文通过状态平均法,获得了Buck电路电压反
1数字模糊PID控制2模拟电压负反馈控制图7系统起动和受输入电压干扰响应曲线
馈控制下的动态小信号模型和传递函数,其控制系统采用数字模糊PID控制。通过使用对非线性、时滞系统具有较好控制效果的模糊控制,对PID参数进行监控,大大提高了PID控制系统的精度、响应速度和适用范围。仿真与实验结果表明,采用本控制方法,系统具有较高的电压调整精度和较快的动态响应速度,适用范围大,抗干扰能力强等特点,特别是抗输入电压干扰能力。由于采用数字控制,控制系统可调整性好,抗外界干扰能力也得到加强。另外,如果本控制方法与遗传算法相结合,利用遗传算法进行对模糊规则的设计和控制,则可弥补模糊控制器缺乏系统设计方法的缺点,从而实现对变换器的智能控制[5]。
基于双12位DAC的高精度直流电压/电流源设计摘 要:本文论述了一种通过使用双通道DAC实现高精度直流电压源与电流源的方法,不仅兼顾了动态范围和分辨率,还节约了成本。除了理论分析外,给出了硬件设计电路图,并进行了测试,验证了该设计的可行性。关键词
基于ARM9处理器的嵌入式音频系统设计1引言随着Internet技术和多媒体技术的快速发展,语音通信技术的应用越来越广泛,也越来越受到重视[1]。如今的嵌人式设备日益复杂化,功能比以前更加丰富,性能也越来越高。在多种嵌人式终端产品中,音频
如何缩短开发嵌入式系统之路在日益信息化的现代社会中,计算机和网络的应用已经全面渗透到日常生活中,各种应用嵌入式系统的电子产品也随处可见,计算机的应用经过桌面PC系统的空前之后,嵌入式系统的应用正风起云涌,广泛进入到工业、军事、