基于FPGA的高速数据处理系统设计
另外,比较各A/D转换器的复杂程度发现多通道(4路或以上)A/D由于其设计的多功能性,导致结构复杂,使用比较繁琐,而AD7356采用16引脚的TSSOP封装,外围电路简单。另外该A/D采用单2.5 V供电,可与FPGA共用电源,使系统的供电系统简洁。而高速A/D转换器的输入是差分式,如图2所示,使用AD8138单端至差分转换驱动AD7357的差分输入。
系统中有模拟地和数字地之分,同时A/D转换器由于其特殊性,处于模拟地和数字地之间,所以对于AD7357的管脚连接应注意。AD7357的REFA和REFB管脚需要通过10μF的退耦电容连接到REFGND管脚,而REFGND管脚则需要连接到AGND管脚。而A/D转换器要求AGND和DGND之间
的电平相差不能超过0.3 V,所以需要将AGND和DGND连接起来。为了避免模拟电路和数字电路之间的干扰,一般情况需要对地分割,但是本系统有多个A/D转换器,所以使用统一地,通过对器件合理摆放来减小模拟和数字电路间的干扰。
2 数据处理设计
2.1 数据处理结构
本系统的数据处理结构如图3所示,首先是采集一定长度的信号存储到双口RAM中,然后经过扰动识别决定是否需要进行扰动定位计算。由于扰动识别和定位计算需要将采集到的数据保存到数据处理完毕,所以FPGA中的双口RAM要有足够的空间,在数据处理的同时继续存储采集到的数据。而在工作时,由于采用了高速的AD7356,最高采样速率可以达到5 M/s,所以要求扰动识别和定位计算速度足够快。
扰动识别部分由于采用的是平方后积分并与阈值比较的模式,属于顺序计算,耗时不多,数据处理耗时的主要部分是扰动定位计算。扰动定位计算采用的是相关计算,其所消耗的时间在计算速度一体成型电感固定时,由数据长度L和相关长度(移位次数)n决定。进行一次相关计算的计算量为Ln次乘法和(L-1)n次加法。
在FPGA数据处理方面,当资源成本为主要制约时,根据速度要求,采用串行结构实现或DA结构实现;当速度成为主要制约时,则根据资源成本因素,采用并行结构实现或DA结构实现。而DA结构主要是通过对资源合理的利用来减小资源的空闲时间,从而插件电感器提高系统的速度。但是对于本系统,在计算过程中各资源几乎是在全速运行,DA结构并不能提高系统的速度,所以需通过并行结构(图4)来提高系统运行速度。通过图4可以看出,如果采用串行结构,整个相关计算由1个XtremeDSP Slice(或者1个单核处理器)完成,每完成一次互相关运算,整个数据段移位一次,共移位n次。因此为了及时处理采集到的数据,串行结构的计算速度至少是采集速度的n倍(根据传感长度不同,n最大可达2 500)。而AD7356最高采样速率可以达到5 M/s,因此计算速度过快,单个XtremeDSP Slice不可能完成。而如果采用s个XtremeDSP固定电感器价格 Slice并行结构,则一次互相关计算相当于串行结构时的s次互相关计算,而本来需要移位n次完成的计算,现在只需要m(图4中变量m=n/s)次移位,每次移位s,即可完成。因此,每个XtremeDSP Slice的计算速度为采集速度的m倍,可以有效减少对计算速度的要求。
2.2 仿真实验结果
为了比较串行结构和并行结构的计算速度,在Xilinx 7.1ISE平台中(Virtex-4器件的最低版本要求),选用Virtex-4系列的XC4VSX25器件,用Verilog HDL语言设大电流电感计串行结构和并行结构,并在ModelSim中对两种结构进行仿真比较。由于仿真时间长度的限制,采用5位128长度的三角波模拟采集到数据,并将XtremeDSP? Slice的计算速率设定在250 M/s,仿真波形结果如图5所示插件电感。
从图5中可看出,采用串行结构,计算耗时约为15.8 ms,而采用4个XtremeDSP Slice的并行计算结构,计算耗时约为4.2 ms。从仿真结果的比较可知,串行结构耗时约为并行结构的4倍。因此,在本系统中并型结构的计算速度是正比于并行度的,这与理论上并行计算可以成倍减少计算时间的分析一致。平面变压器厂家 | 平面电感厂家
基于级联逆变器的光伏并网发电系统控制策略摘要:提出了基于混合控制的级联逆变器光伏并网发电系统的双级控制策略。通过控制电流瞬时值反馈滞环控制单元输入电压值为恒定,将输入电压控制和光伏系统并网电流控制解耦,简化了控制器设计。该双级控制策略可在进
求助!!!关于JY01使用过程中发现部分霍尔相位在一个求助!!!关于JY01使用过程中发现部分霍尔相位在一个方向上不能启动。使用的芯片是JY01-457E,具体现象:使用过程中发现电机经常会出现启动不起来的时候,但是向反方向转动可以启动起
如何在高中频ADC应用中改善增益平坦度而不影响 摘要:本文指导用户选择适当的变压器,用于高速模/数转换器(ADC)前端的信号调理。本文还阐述了如何合理选择无源元件,在较宽的输入频率范围内改善增益的平坦度,而且不会牺牲ADC的动态特性。文中给出了变