数字技术在开关电源控制中的应用和发展
控制处理器由高速A/D转换器,数字贴片电感PID补偿器和数字DPWM输出组成。外部存储器记录了控制处理器的相关程序。高速A/D转换器是基于CMOS的传输延迟时间td 影响输入电压VDD的原理做成的,VDD电压和传输时间是成近似的反比例关系,即VDD越大,信号传输延迟时间越小。如图2所示,以CMOS的输入电压VDD作位采样电压的输入口,各信号之间的传输时间延时td受采样电压VDD影响。第四分之三个采样周期过后采样结束位产生高电平,电感生产开始记录q1到q8的输出,把得到的结果送入编码器得到数字输出e,完成A/D转换。如图2b所示,数字采样值为11111100.VDD越大,td越小得到的采样值越大。
高速AD转换器原理图及其波形
而传统的ADC转换器时通过有源器件建立采样信号的,需要一个信号建立时间,而要进行高精度的采样则需要更长的信号建立时间。采用新的技术大大降低了AD转换需要的时间,可以达到MHz级采样频率。高采样频率可以使DPWM的信号的更新速度达到几百纳秒一次,实现和模拟控制类似通过不断更新PWM信号来进行稳压。不需要像传统的ADC采样那样,在有限的采样频率内通过提高AD转换精度和PWM分辨率,降低开关频率来提高稳压精度。DPWM时钟由处理器系统时钟通过锁相逻辑环路(PLL)进行倍频后频率可以达到20插件电感器0MHz.通过这种分辨率高达5ns的DPWM控电容器电感器制信号,电源开关频率可以达到1MHz.数字补偿器为电源设计提供很大的灵活性,控制参数通过外部存储器的程序来设定,可以通过编程来改变控制策略,调试更方便。由于芯片是专门为电源设计开关,简化了结构,降低了成本。相信这种专门为电源设计开发的控制处理器将会得到广泛使用。
目前使用这种控制技术的芯片还比较少,Silicon Labs的Si8250就是其中一款[3].Si8250采用双处理器的方法,所有的通信和管理任务由系统管理处理器来完成,而控制处理器负责反馈的环路控制。系统控制环路由一个6位采样频率为10MHz的AD转换器,可以每隔100ns更新一次数字PWM输出信号,以达到更好的稳压效果。在而数字PID补偿器里面分别为P,I,D的系数KP,KI和KD提供寄存器,只要改变这些系数的值就可以改变PID控制策略。PID的值通过寄存器设定,习惯进行模拟控制芯片设计的工程师也容易掌握。提供六路相位不同的数字PWM输出,可以用比较简单的方法实现移相控制等多中控制方法。数字PWM的时钟频率在25MHz,50MHz和200MHz中选择,分辨率高达5ns.可以使开关频率达到100MHz.
4 结语
和模拟控制相比,数字控制有着明显的优势。但由于目前大部分数字芯片并不能完全满足开关电源的要求,而能达到要求的昂贵的DSP芯片又过于昂贵,所以数字控制技术在电源领域中的应用并不广泛。随着控制处理器插件电感技术的提出,用于电源控制的数字芯片的出现,数字控制技术在开关电源中必将得到更广泛的使用。
电子鼻传感器的应用设计电子鼻是利用气体传感器阵列的响应图案来识别气味的电子系统,它可以在几小时、几天甚至数月的时间内连续地、实时地监测特定位置的气味状况。 电子鼻主要由气味取样操作器、气体传感器阵列和信号处理系统三种功能
利用SHARC 2147x处理器提升便携式连续波多谱勒浮点数字信号处理已成为精密技术的一贯需求,航空、工业机器和医疗保健等领域要求较高精度的应用通常都有这个需求。医疗超声设备是目前在用的最复杂的信号处理机器之一,并且逐渐向便携式领域扩展。其面临的挑战在于
PFC 交流本人做了一个反激PFC, 全电压输入时,输入电压升不上去, 升到130Vrms 变压器就开始响, 有没有大神帮忙推测下,都有哪些因素会造成? 开环测试的,还没上闭环。
原理图和参