嵌入式应用中的互连技术应用
连接外围器件似乎是设计工程师必须面对的处理过程。在很多情况下,串行网络具有足够的性能来完成该工作并最小化器件间的连接。这对于器件间距离大于数厘米的情况非常重要。
目前已有多种方案可用。而许多其它的方案可以从现场总线、具有专利的接口和专用串行接口中选择。它们之间常常会有直接竞争关系,但是大部分方案都有其利基电感生产厂家市场。
通常,一个串行互连包含的电线数目不会超过6根,其中可能包括电源线和地线(不过情况可能会有变化)。例如,像美信公司1-Wire这样的器件需要连接地线。这也是一个互连的多种参考设计在计算电线数目时没有将电源线计算在内的原因。
目前存在很多不同的架构和协议,对于工字电感单主机和多主机网络而言也存在这种情况。以太网、PCI Express和Serial RapidIO(SRIO)等诸多架构都需要一个交换结构。
当处理串行网络的集成接口时,性能和简一体电感器易性往往都是问题。8位或性能更强微控制器必须支持I2C、串行外设接口(SPI)、控制器区域网络(CAN)、本地互连网络(LIN)和1-Wire接口。而多功能串行端口通常可支持上述接口以及类似RS-485的标准串行接口(虽然RS-485和CAN一般都需要采用外部收发芯片)。
大部分其它接口采用标准微控制器输出,并允许器件之间的直接连接。由NXP公司推出的I2C通信链路是可提供这类支持(图1)的一种双线解决方案。它不包含任何错误检查功能,但支持多主机操作。
图1:一个I2C主器件提供时钟和初始地址。根据主器件R/W位的值决定是由主器件还是从器件传送数据,基于每字节来识别数据传送。最高有效位(MSB)位是最先被传送的位。
数据包包括一个用来指示主器件或从器件是否发送数据的地址和方向位。此外,I2C属于PMBus、SMBus和智能平台管理接口(IPMI)等功率管理和系统管理标准的一部分,以上标准可利用I2C的多主机模式。而且I2C没有版税问题。
I2C的主要对手是SPI(图2)。作为一种主/从器件的互连接口,SPI通常用于将外围芯片连接到主处理器上,其芯片选择架构的硬件和软件实现十分简单。SPI可提供比I2C更快的传输速率,但需要以采用更多电线为代价。在硬件端,仅需一个移位寄存器和一些逻辑门就可以实变压器与电感器设计现。此外,SPI还可提供一个相对于I2C的基址寄存器寻址方式而言非常低级的接口。
CAN和LIN总线起源于汽车产业(图3)。但是当CAN已经被广泛用于自动控制、系统控制和机器人中时,LIN仍然仅将其应用范围锁定在汽车领域。在大量微控制器上提供的CAN接口构成了实现多种协议和现场总线的基础。此外,CAN还采用了一种不同于大多数嵌入式网络的寻址方式。
大部分网络协议对接收器进行标识,有时候也标识出发送器。CAN则对数据包的数据进行标识。它的接口通常具有多个用来检验输入数据包标识符的滤波器。滤波器可以屏蔽某些位,这使得它们能够识别数据类别并忽略其余部分。而且,CAN是为数不多的实现了优先级策略的系统之一,优先级策略也属于标识符处理过程的一部分(因此最高的标识符值具有优先权)。
其它低速(低于1Mbps)互连包括美信公司的专用1-Wire协议(图4)。该异步协议仅需利用一个片上二极管和电容器就可以给联网器件提供最小量的功率。这种寄生方法适用于简单的传感器和通常与1-Wire配合使用的控制芯片。虽然该方法并不是专门针对1-Wire协议的,但在这类产品中应用得最普遍。
基于dSPACE的双绕组感应发电机实时控制系统研究1引言 新型双绕组感应发电机定子嵌有两套极数相同的绕组,一套为功率绕组,输出端接励磁电容、整流器负载:另一套为控制绕组,接励磁变换器,可为发电系统连续调节励磁,保持功率绕组输出电压不变。双绕组感应发电
基于MCU的新型改善液晶屏极化驱动电路设计摘要:文章介绍了一种新型的改善液晶屏极化驱动电路,利用MCU 搭建来控制液晶分子正负翻转的时间。该电路通过控制POL 信号,使得每隔28s 的时间将POL 信号做一次反向输出,从而使液晶屏不易发生极化
一种实用的BOOST电路0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很