DSP中电源噪声问题
去耦电容器应放置在PCB底端靠近器件引脚处。对于高风华电感器速DSP,去耦电工字电感塑封电感器容器应放置在每个电源引脚处。若空间不允许这样做,也应尽可能地放置在器件周围。复杂DSP去耦的一种有效方法是从对角划两个虚线构成一个X(图4)。然后独立分析4个区域的每个区域。
为使得体电容器靠近去耦电容器,把它们放置在板的顶端。这种定位使线踪最短,同时可降低辐射和寄生电感。
以TI公司的OMAP5910 DSP为例,特别注意包含数字PLL和外部存储器接口的区域(图4中左边区域)。该器件有13个芯核电压引脚,峰值芯核电流耗电170mA(平均每个引脚13mA)。在该区域的3个芯核电压引脚包括数字PLL和外部存储器接口,耗电39mA。为了保证精度,在确定电容器大小时,增加100%容限(即78mA)是合适的。必须消除峰值I/O电流。应采用谨慎的方法,假定在此区域所有54个I/O线同时开关4 mA,这将导致216 mA通过此区域的8个I/O电压引脚。
随着芯核和I/O电压工作不同频率,必须用合适大小的电容器去耦电源。在此实例中,用下面的公式计算,计算的芯核电容为0.0078mF,对于216mA I/O 电流所需电容为0模压电感器.22mF:C=I(dv/dt)
其中I为峰值电流,dv为最大所允许的纹波电压(假定10mV),dt为上升时间(假定1ns,OMAP5910典型值)。
所以,芯核电容C=78mA&tim贴片电感es;(1ns/10mv)=0.0078mF
在OMAP5910 BGA 封装中,对于每个区域的4个电容器都有足够的空间,没有一个是用于每个芯核电源引脚的。因此,为了去耦芯核电压引脚,最好选择两个电容器,其总值为 0.0078mF(配置两个0.0047mF陶瓷电容器,以使从引脚到地有最短距离)。
必须考虑开关频率。芯核部分在150MHz开关转换,而8个I/O引脚在75MHz开关转换。可以用另外两个电容器位置来去耦I/O电压引脚(即用两个自谐波振频率75MHz以上的0.01mF陶瓷电容器提供0.022mF)。
体电容器值
在此实例中,DSP总芯核电压电流为338mA。用上面的公式计算电容为0.0338mF。做为体电容应该是10倍去耦电容值,大约为0.39mF。对于I/O电压,进行同样的处理,得到0.84mF电容,给出总电容1.23mF。对于体电容器,每个提供3.075mF(1.23mF除以4,然后乘以10),应该把它加到每个区域上。现在可得到的最小体电容值是做为表面贴装元件的4.7mF,此电容值在本例中工作良好。如果没有表面贴装电解电容,应选择钽体电容器。对于4个区域的每个区域去耦和体电容值可以用这种方法计算,并示于图4。
平面变压器厂家 | 平面电感厂家开关电源原理与设计(连载三十二)推挽式开关电源的1-8-1-5.推挽式开关电源的优缺点推挽式开关电源的优点前面已经提到很多,这里再简单概括一次。由于推挽式变压器开关电源中的两个控制开关K1和K2轮流交替工作,其输出电压波形非常对称,并且开关电源在整
基于单片机的轨道压力测试仪的实现轨道电路是信号联锁的室外重要设备,起着保证行车和调车作业安全的作用。它能监督检查某一固定区段内的线路(包括站线)是否有列车运行、调车作业或车辆占用的情况,并能显示该区段内的钢轨是否完整。它是以钢轨为导
TMS320C5402 DSP在嵌入式测控系统中的应用1 C5402DSP的应用特点 尽管从一般意义上讲, 基于MCU(单片机)与DSP(数字信号处理器)这两类器件的系统都有各自的用途,但现在很多新兴的嵌入式应用,尤其是那些大型的复杂系统,在系统内同时实