滤波电感在电源抗干扰中的应用
从电学角度来说只有阻抗不匹配的条件下才能在滤波器内产生最大的吸收(或损耗),用EMC俗语称之为“滤波器插入损耗”。EMI滤波器主要是消除或降低传导干扰。实际上传导干扰又分为共模干扰和差模干扰,所谓共模干扰是指相线与地线之间干扰信号的相位相同、电位相等,而差模干扰是相线间干扰信号相位差180°(电位相等)。因此滤波电路也分为抗
共模和抗差模干扰电路,参见图1。
图1抗共模和抗差模干扰电路
图中LC1,LC2,Cy1,Cy2构成共模滤波电路,LC1,LC2为共模滤波电感,而Ld1,Ld2,Cx1,Cx2构成差模电路。共模电感Lc一般数值0.3mH~38mH,共模电容Cy,只要控制在漏电电流于<1mA条 件 下 , 选 择 较 大 数 值 为 准 。 而 差 模 电 感 Ld一 般 在 几 十 至 几 百 微 亨 , 其 电 容 应 选 耐 压 大 于 1.4kV的 陶 瓷 或 聚 酯 电 容 。 Ld1,Ld2差 模 电 感 、 电 容 值 越 大 , 低 频 效 果 越 好 。 市 场 上 购 买 的 EMI滤 波 器 大 都 是 对 共 模 干 扰 设 计 的 , 对 差 模 抑 制 效 果 很 差 。 实 际 上 开 关 电 源 中 共 模 与 差 模 干 扰 同 时 存 在 , 特 别 对 于 有 源 功 率 因 数 校 正 电 路 中 差 模 干 扰 的 强 度 很 大 。 对 于 开 关 电 源 , EMI滤 波 器 对 高 频 的 EMI信 号 抑 制 比 低 频 的 EMI传 导 消 除 容 易 得 多 。 常 常 利 用 共 模 电 感 的 差 值 形 成 的 差 模 电 感 就 能 消 除 300kHz~ 30MHz传 导 干 扰 电 平 。 设 计 和 选 用 滤 波 器 一 定 要 根 据 电 路 的 实 际 需 要 而 定 。 首 先 测 出 传 导 干 扰 电 平 与 所 规 定 的 EMC标 准 极 限 比 较 , 一 般 0.01MHz~ 0.1MHz是 差 模 干 扰 起 主 导 作 用 , 0.1MHz~ 1MHz是 差 模 电感器厂家与 共 模 干 扰 联 合 作 用 , 而 1MHz~ 30MHz主 要 是 共 模 干 扰 起 作 用 。 根 据 实 验 结 果 来 判 断 和 选 择 对 超 标 信 号 有 抑 制 作 用 的 滤 波 器 或 器 件 。 当 然 实 际 操 作 相 当 复 杂 , 要 有 相 当 高 的 技 术 水 平 和 经 验 。
3EMI滤波器中电感材料的选择
降低电子设备的电磁干扰已成为电子产品是否有市场的关键差模电感器问题。而软磁材料已节能灯电感器成为EMI滤波器中不可少的元件,并起着举足轻重的作用。现在用软磁材料制成的各种抑制EMI元器件广泛地应用于各种电子电路和设备之中。这是因为软磁材料具有它独特的性能,致使其在抗电磁干扰领域发挥主要作用。然而,电子产品生产厂家希望能得到通用EMI滤波器对所有的电子设备都能把干扰降低到标准以下,这是不现实的。EMI滤波器的设计要根据该电子设备的EMC标准,即需要一体电感衰减EMI信号的频段范围和超标电平高低来选择,特别是其中的软磁材料。因为软磁材料种类繁多,各有自己的电磁特征。除了基本磁参数如Bs,μi损耗外,还要利用它们的电特性、电阻率、频宽、阻抗等。根据所需衰减干扰信号范围,确定对应的滤波电路,然后再精心挑选适合于该频段的磁性材料,滤波电感才能达到最经济和最佳效果。想用一种材料满足各种抗干扰滤波器是不能达到预期效果的,必需选用适合该频段的磁性材料。从材料的观点看,EMI滤波器的作用是阻隔不需要的信号并以发热的形式消耗掉,而让需一体电感要的信号无衰减或几乎不衰减地通过。值得指出的是以发热形式所消耗掉的能量并不是指线圈在电流作用下的焦耳热(即I2R)。故在绕制线圈时一定要选用足够大线径的铜线,尽量减少这种能量的损耗。从电学观点可把滤波器中带有磁性材料的电感在频率较低时等效为纯电感L和纯电阻R的串联,其阻抗Z=R+jωL。对于平均直径为D的圆环,根据安培定律和电磁感应定律可得到:
e=N1S·dB/dt
H=N1I/l
式中N1,I——为环形磁芯上激磁线圈匝数和电流;
S——磁芯截面积;
l——平均磁路长度(πD)。平面变压器厂家 | 平面电感厂家
[开关电源]请教RCC高压电源设计问题请教各位大虾:我要做一个输出8000V,0.35mA的高压电源。 前面部分用RCC,输入DC24V,频率要求20k~40k,后面用2倍压。 变压器磁芯选Ae=15.5mm^2的,UI形状。 目前无论怎么改,频率都在80k~140k之间,倍压后输出最高也才3500V。 各位能否赐教一下,哪里能再改改。 另外,由于变压器次级输出频率很高,一般万用表没法测量,有没有其他方法直接测量变 一种锂离子智能充电器的设计与实现摘要:本文介绍了由MAXIM公司生产的一种新型充电器件MAX1757构成的1~3节锂离子电池充电器的工作原理和充电过程,并在此基础上给出了该充电器的工作流程及参数设置;最后简要阐述了PWM控制器的工作 照明驱动电源效率提高的技巧1,首先当然是,选择高效率的拓扑结构这个是方案选型的开始,例如PWM和QR PFM,能选用软开关的尽量选用软开关拓扑(软开关损耗小),当前提客户提出效率要求,就要评估选什么样的拓补,当然还要综合考虑成