LED显示屏用电源的设计
2)当电流 iD4减少为零时,D4进入反向恢复状态,通过电感L2的电流iL2=iL1+irD4。D4反向电流irD4的变化率受到电感L2的控制,反向恢复损耗降低。
3)主电感L2中电流缓慢增加,Q上的电压uQ下降。电容C2通过D2、C1、L2、Q放电,C2工字电一体成型电感器感上的电压uC2下降。
4)当uC2下降为零时,C2中的能量完全转向C1、L2。L2中的电流饱和不变,uQ下降变为零,Q完成零电流开通过程。
5)Q保持开通状态,与普通PFC电路的开关管状态相同。
6)Q关断时,L2中的电流iL2通过D1流向C2,C2从零开始充电,Q实现零电压关断,关断损耗较小。二极管D2、D3使uC2最终钳位在输出电压VL。
7)L2在导通时存储的能量通过D1、D2流向C1,L2逐渐复位。当L2复位后,C1中的能量通过D3输出。
8)当C1两端电压变为零时,D4正向导通。Q完成零电压关断过程。
9)Q保持关断状态直到开始进入新的开关循环过程。
Q的开关波形如图2所示;Q的实测导通时间和关断时间如图3大功率电感贴片电感器所示。(电源负载22A)
图2 Q的D-S极之间开关波形
图3 Q的导通时间和关断时间
从以上分析可知此无损吸收网络具有以下几个特点。
1)Q的最大工作电压等于输出电压VL。
2)PFC电路的输出二极管D4的耐压是VL与电感L2的反向电压之和。
3)Q中的电流上升率,即Q的开通损耗决定于电感L2两端电压和L2的电感量。
4)Q两端的电压上升率,即Q的关断损耗决定于流过电容C2的电流和C2的容量。
5)由于开关动作引起的存储在L2和C2中的能量最终都输出给了负载,保证了转换器的工作效率。
2.2 DC/DC主电路设计
DC/DC主电路采用单端双正激电路。单端双正激电路相对于其它拓扑电路结构,开关管承受电压低,在控制电路设计中不必担心共态导通问题,也不会因电路不对称发生高频变压器单向偏磁,即不存在变压器饱和问题,是一种可靠性较高的电路。考虑到整机的高度不超过60mm,以及变压器工艺、安装、散热的要求,DC/DC变换采用双变压器、双输出电感结构。变压器原边并联,副边各自用一个输出电感,如图4所示。
图电感位移传感器4 双正激无损吸收主电路
该电路的无损吸收网络不同于AC/DC部分电路所采用的无损吸收网络。它仅使开关管完成了零电压关断过程。以下以开关Q平面变压器厂家 | 平面电感厂家
基于飞思卡尔单片机的两轮车控制系统设计1.前言本文以飞思卡尔的小车模型为对象,设计了以飞思卡尔单片机MC9S12XS128为核心,自主循迹的两轮车自平衡控制系统。实验证明该方案在摄像头导航的两轮车系统中具有准确、快速、稳定的自主寻迹效果。 一种多路输出军用车载电源的设计1 引言 本文提到的多路输出军用车载电源是一种输入输出均为低压大电流的双路DC/DC开关电源。输入电压9~15V,输出电压2路:一路24V;一路5V。24V输出又同时供给三路负载;输入电压又直接供给两 开关电源系统的频域模型的方块图方块图是自动调节(控制)系统中各个单元的动能和信号流的一种图解,也是一种数学模型,它表示各个单元之间的相互关系和信号流动的情况,图所示的方块图是一个单环控制的开关电源系统的方块图,方块图可用以分析小信