无线传感器网络节点太阳能电源系统设计
摘要:对于无线传感器网络节点而言,电源是系统的关键部分之一。在此提出一种收集环境中太阳能为传感器节点供能的电源系统。该系统采用了高效安全的充电控制技术,独特的电池电压监测电路,以及低功耗的DC-DC转换电路。通过实验验证,基于此太阳能电源的传感器节点功耗动态调整节性能好,生存周期显著增加。该系统可应用于各种户外监测的节点,如环境监测,精电感生产细农业,森林防火等。
关键词:无线传感器网络;传感器节点;能量收集;太阳能;DC—DC
0 引言
无线传感器网络在环境监测、智能家居、交通运输、精细农业等领域具有广泛的应用前景,越来越受到人们的重视。传感器节点作为无线传感器网络的重要组成单元,通常散布于一定的区域内协作地实时监测、感知和采集各种环境和监测对象的信息。传感器节点部署环境和实际应用中的要求决定了节点电源大多数情况下不可能接入正常的电力系统供电。例如Crossbow公司的MICAz节点如果采用3 000 mAh的电池设置在1%电感器厂家的工作周期,那么每隔17.35周就需要更换一次电池。此外由于节点常被布置在恶劣及复杂的环境中,进一步增加了更换电池的成本。如何能稳定有效地为传感器节点提供电源保证就成为传感器节点设计的关键问题。目前针对这一问题的研究思路主要是如何从节点所处的环境中采集能量并进行有效的存储,使节点具有能量补充能力从而有效地延长节点的生存周期。环境中具有各种丰富的能量,如太阳能、风能、热能、机械振动能、声能、电磁能等。目前,已有一些公司研究和开发了利用环境能量为无线传感器网络功能的系统。例如太阳能收集模块CBC-EVAL-08已成功应用在TI公司的超低功耗无线传感器网络节点eZ430-RF2500-SHE上为其提供能源。创业公司Perpetuum推出PMG7微型振动发电机,能从一个100 mg振动中产生高达5 mW/3.3 V的输出功率。但是,目前的能量收集都具有一些局限性,如太阳能收集模块CBC—EVAL-08由于光伏薄膜电池收集能量较少且缺少备份能源仅能在有阳光时工作;利用振动能量使得节点的布置环境受限制即使在间歇性的振动环境下,系统也无法稳定地连续工作。
通过对环境中的各种能量比较分析得出户外的传感器节点利用太阳能供能不失为一种较好的选择。本文提出一种基于太阳能的节点电源系统设计,该系统能够自动管理充电过程并进行有效的能量储存,通过对电池电压的监测执行节能方案,以达到延长节点生存周期的目的。此外由于节点上各种器件所需的电压不一致,高效的DC—DC转换也是必不可少的一环。
1 电源系统设计
电源单元是传感器节点能源供给部分,它决定着传感器网络的寿命,因此节点的电源设计非常重要。电源单元主要由电池、电源管理模块及外围电路构成。电源设计首先要考虑的是低功耗。由于负载的功耗与电压的平方成正比,因此在保证系统可靠工作时尽量选用较低的工作电压。传感器、MCU、无线射频模块等节点组成部分都有铁硅铝电感器低工作电压选择余地,如+3.3 V。综合考虑上述因素,提出如图1所示的电源系统。
在该系统中,太阳能电池板产生的能量通过充电控制单电感器厂家元被存储在锂电池中;供电管理单元通过对电池电压的实时监测选择合适的供能方案。由于电池放电时其端电压会逐渐降低,对ADC采样等会造成影响。此外各种器件的工作电压也不一致,为了保证系统可靠地工作,需要一个稳定的供电电压。由于电源单元本身应尽可能少地消耗电池能量,必须提高电源的转换效率,因此设计了一个具有高效率的DC—DC转换单元为节点上的负载提供稳定的电压。
1.1 充电控制单元
充电控制单元连接着太阳能电池板和锂电池,其功能主要是有效地将收集到的能量存储在锂电池中。本设计中太阳能电池板选用80mm× 45mm的电池板,此电池板最大输出功率时输出电压为5.5 V,电流为150 mA,转换效率为16%。锂电池没有记忆效应,选用一款容量为2 000 mAh,工作电压为3.7 V的锂电池。该单元控制部分采用凌力尔特公司(Linear Technology Corporation)推出面向锂离子电池的智能充电控制芯片LTC4070。该器件以其450 nA的工作电流,用以前不能使用的非常低电流、断续或连续充电,对电池进行充电和保护。该器件的功能非常适用于连续和断续、低功率充电电源应用。LTC4070具有引脚可选的4.0V,4.1 V或4.2V设置,其1%准确度的电池浮置电压允许用户优化电池容量和寿命之间的平衡。独立的低电池电量和高电池电量监察状态输出表明电池已放电或充分充电。加上一个与负载串联的外部PFET,该低电池电量状态输出实现了锁断功能,该功能自动使系统负载与电池断接,以保护电池免于深度放电。充电控制单元原理工字电感器图如图2所示。
平面变压器厂家 | 平面电感厂家
一款可实现超低压差CMOS线性稳压器的设计方案随着笔记本电脑、手机、PDA等移动设备的普及,对应各种电池电源使用的集成电路的开发越来越活跃,高性能、低成本、超小型封装产品正在加速形成商品化。LDO(低压差)型线性稳压器由于具有结构简单、成本低廉、
新型同步整流电路的设计随着国防、航空航天科技的发展,广泛用于通信、电子对抗等领域的军用、航空电子产品对供电电源的要求越来越高,它们不仅要求电源技术指标高,还要求体积小、重量轻、效率高、可靠性高。随着电源输出电压的降低及输出
某新型火炮随动系统的性能测试系统设计摘要:提出一种新型火炮随动系统的性能测试系统设计,采用TMS320LF2407A DSP作为火炮随动系统性能测试系统的核心,利用DSP的捕获单元完成了随动系统跟踪速度的实时数据采集,并详细介绍CAN总