您现在的位置:首页 > 基础知识基础知识

DSP控制的UPS逆变器的谐波调节系统失真的消除

发布时间:2017-05-06 08:29:35  来源:大电流电感厂家   查看:
一体成型电感器杂信号处理的操作,也能够提供正弦负载电压,同时也避免了对大规模无缘滤波器的使用。
增强型平衡功率(BP塑封电感)UPS系统采用了德州仪器公司的DSP TMS320C25。BP逆变器的DSP控制采用了谐波校正算法。如图2所示:先对UPS脉宽调制逆变器的输出进行采样,并在负反馈环路中将其转换为有效电压。对逆变器的实际输出与软件提电感器厂家供的有效参考值进行比较后产生一个误差电压,将该误差电压通过比例积分控制来消除稳态误差的引入,再将其结果为误差补偿信号,然后电感器厂家从该误差补偿信号中减去谐波失真信号,最后将所得的结果作为PWM逆变器的输入信号。上面所提到的谐波失真校正信号是在负反馈回路中产生的。DSP在输出电压波形中检测谐波失真信号,并确定谐波元件实部和虚部的幅值。此过程是用来消除5次谐波的,但是如果谐波频率低于采样频率的一半时,该谐波也会以同样的过程被消除。
图2  DSP控制的UPS系统方框图然后在比例积分补偿器中应用振幅元件来产生谐波失真校正信号,它基本上消除了输出波形的谐波失真。再从误差补偿信号中减去合成的谐波失真校正信号,将其结果输入PWM逆变器,从而产生一个基本上没有谐波失真的输出电压波形。DSP控制的逆变器和谐波调节器能够在变化的非线性负载条件下工作以提供正弦负载电压。
UPS非线性负载的谐波消除实验是在一台1kVA系统上进行的,该实验采用了德州仪器公司的DSP TMS320C25作为控制芯片,所使用的UPS系统是IPM公司的增强型平衡功率(BP)逆变器的原型。图3 ~ 7表明了采用DSP TMS320C25后的UPS系统性能。各图均为输出电压和电流的时域波形以及输出电压的频谱。
图3 无谐波调节器作用时的UPS工作情况 图4 5次谐波调节器单独作用时UPS工作情况
图5 7次谐波调节器单独作用时UPS工作情况 图6 5次和7次谐波调节器同时作用时UPS工电感器单位作情况
图7 5次谐波无缘滤波器作用时的UPS工作情况 表1 UPS工作条件
表1所列出的是UPS在每幅图中不同的工作条件。图3所示为UPS在没有任何谐波调节器时的工作情况。由于谐波电流从非线性整流型负载注入,所以UPS输出电压波形产生畸变且主要包含5次和7次谐波。 图4和图5分别显示了5次和7次谐波调节器单独工作时的情况。表1给出了当每一谐波调节器分别工作时电压THD的微小变化,这是因为在消除一个谐波的同时就会引起未补偿谐波幅值的增加。图4中电流THD的显著增加是由于在现有负载工作条件下电流是不连续的。 图6所示为5次和7次谐波调节器同时工作时的标准BP UPS的工作情况。此时可以得到无谐波失真的正弦电压波形,并且可以看到电压THD的显著降低。最后在图7中给出了伴有5次谐波无缘滤波器的UPS工作情况。由于没有谐波调节器,因此图7中的正弦电压波形的品质比图6中的明显降低了。5 结语
本文讨论了UPS系统的控制方法,重点分析了DSP控制的UPS逆变器和谐波调节系统。DSP控制的UPS系统使用了软件控制的谐波调节器,它能够动态地适应变化的负载条件,并对负载谐波进行自动补偿。实验结果表明,对于大功率UPS一体电感器系统中非线性负载所产生的谐波失真,能够通过基于DSP控制的谐波调节器有效地进行消除,从而得到无谐波失真的输出电压波形。 平面变压器厂家 | 平面电感厂家

电池组MOS开关控制的瞬时短路图中上下两管互补。 将电池接入回路时,Q4打开,Q16闭合;将电池断开时,反之。 使用时发现改变控制逻辑时会出现上、下管均导通的时间,约为10ms。 想求助下,有没有不增加一倍的单片机控制脚的情况下解决这个问题。 (PS:简单说就是关断为立即,闭合加入延时)满意回复+20lfc315 查看完整内容可以利用电容,快速放电,缓慢充电;如下图示意,具体如何

protues仿真时IO口为何不能拉为低电平???各位大神帮忙看看,如图所示,单片机P2.3接光耦4脚,光耦3脚接地。为何光耦导通时P2.3不能被拉为低电平呢?



这个很基础了
个人觉着:光耦导通时,4、5脚之间有一个

德州仪器推出业界首款基于多内核 DSP 的实时 JP日前,德州仪器 (TI) 宣布推出业界首款基于多内核数字信号处理器 (DSP) 的实时高清 JPEG 2000 编码解码器实施方案。4 款具有 JPEG 2000 编解码器的 TI TMS320C66

CopyRight2014
大电流电感 | 大功率电感 | 扁平线圈电感 注塑加工厂