运用于模拟前端的运算放大器设计技巧
图3:带有扩展AC信号性能的系统频响。
如果增益设置为10且带宽为500MHz,则由图1得到300欧姆的推荐反馈电阻(RF1)。
因此RG1(增益电阻)可选为33欧姆。图2是LMH6703和一个差分放大器一起使用的电路实例。
除了需要具有合适的DC信号通道的固定增益级别的系统,该应用还需要一个AC耦合模式。这是因为DC信号通道通常受到输入放大器所产生的增益带宽的限制。对于数据采集器件或需要很宽的输入带宽和低失真的通信通道而言,我们需要采用AC信号通道。这可将输入频率上限扩展到DC信号通道容量以外。
解决办法有很插件电感器多种,选择哪种方法在很大程度上取决于最小的输入频率以及所需的高频性能。对于高频下(≥200MHz)的最高AC性能而言,平衡一体电感/非平衡变压器为实现单端-差分转换提供了解决方案,因为增加的信号失真很少。其折衷在于平衡/非平衡变压器是有损耗器件,会小幅(-12塑封电感器dB)削弱信号,并且它们的低频性能很差。通过使用单刀RF继电器来将单端输出信号从前置放大器切换到差分放大器或平衡/非平衡转换电路中,可以将平衡/非平衡耦合信号通道插入图3所示的电路中。还需要另一个单刀双掷RF继电器来将平衡/非平衡变压器和差分放大器的输出转发到ADC输入中。
图4:198 MHz正弦波(由高速差分输出运算放大器发送、由ADC08D500以500 MSPS的速率进行采样)的FFT图。
该电路很适于高端测试和测量设备。但是,对于成本敏感的应用,RF信号继电器的成本造成了系统预算的负担,特别是在电感的单位需要多个通道的情况下。因此低速系统选择可用于AC耦合和DC耦合模式的差分输出运算放大器会很有利,从而去除了平衡/非电感器生产平衡转换电路。特别适合于该任务的放大器开始逐渐出现,并在逐渐提高带宽和THD方面的性能。
对于8位1GSPS的转换器而言,在500MHz下能够提供-50dB THD值的、最小带宽为1GHz的差分放大器是很适合的。利用可以极大缩短前端设计时间的现成的运算放大器元件,可以从高速ADC获取较好的动态性能。在频率上限处,放大器引起的SINAD损耗不超过34dB。图4展示了198MHz输入信号(由宽带差分输出放大器进行缓冲,再由8位ADC以500MSPS的速率进行采样)的FFT。该图表明该放大器在该频率下具有很低的2阶和3阶谐波失真,使得ADC采集到的信号的噪声与失真数值,能与从专用AC耦合信号通道获得的性能相当。 平面变压器厂家 | 平面电感厂家
手机语音识别应用中DSP的选择策略随着DSP技术的进步,计算能力更强、功耗更低和体积更小的DSP已经出现,使3G手机上植入更精确更复杂的自动语音识别(ASR)功能成为可能。目前,基本ASR应用可以分成三大类:1. 语音-文本转换(语音
labview获取队列引用,如何给元素数据类型赋值? 如题,目前在一个数据采集项目中,使用生产者消费者模式设计,消费者输出的数据类型为波形数据,请问各位大神,获取队列引用中如何给元素数据类型赋值,保证输出的数据类型为
脉冲充电电流设置请问各位前辈,蓄电池进行脉冲充电时,充电电流幅值要怎样设置?能够超过电池参数里面的最大充电电流吗?
你是脉冲充电,最好不要超过 否则不安全。
现在蓄电池都是用这种