AD834用于直流至500MHz应用:均方根-直流转换、电压控制放大器和视频开关
图4. 均方电路塑封电感在-5 dBm、0 dBm和+5 dBm输入功率电平下的频率响应
图5. 测试配置
为获得更大的输入范围,输入端具有50Ω串联电阻的分压器将缩减AD834上的电压,同时维持适当的端接电阻。例如,如果将输入信号施加于与5Ω接地电阻串联的45 Ω电阻,则从分压器中间节点截取AD834输入将给输入信号带来20 dB的衰减,同时维持50Ω (45Ω + 5 Ω)的端接电阻。
低功率信号的检测受限于运算放大器的直流失调和共模抑制。例如,运算放大器内仅存在1 mV失调时,对应于50Ω两端22.4 mV rms的-20 dBm信号将产生4.5%的误差。如果AD834 X通道失调仅为2 mV,可产生10%的误差。
均方根-直流转换器
均方根(rms)电路(图6)不仅仅是在上述均方检波器电路后添加平方根电路。频率响应由前端平方器和输出滤波器决定。根据均方说明,平方器在超过500 MHz后起作用,而较低的-3 dB频率响应为340 Hz (100 Ω和4.7iF)。请注意,输入端的电阻分压器网络决定满量程输入电压为±2 V峰值。
平方根函数通过在AD711运算放大器的反馈环路内对AD834求平方来执行。2N3904晶体管起缓冲器的作用。用于平方根部分的AD834缓冲输出与X和Y通道输入间的电阻分压器网络(两个100 Ω)决定输出调整为±2 V满量程。
对两个AD834的输出求电流电感器的识别差。由于激光调整后AD834输出信号电流缩放具有高精度,可实现精确的输出求差和求和。AD711迫使两个AD834信号电流间的差异趋于零。零点校准中的任何误差会在两个100 Ω上拉电阻两端产生电压。
通过15 kΩ、85 kΩ和0.1uF网络执行额外滤波和电平转换后,残余误差由整个AD711开环增益放大。放大后的误差信号迫使反馈环路内AD834的输出匹配均方AD834的输出。当均方根电路输出等于电路输入均方函数的平方根以及均方根函数时,误差归零。
小信号电平下电路的精度受限于不可避免的失调电压。虽然均方函数的标称0 V输入(1 mV误差)产生1 uV输出误差,同样的输入误差通过平方根电路却可产生31.6 mV的输出误差。
图6. 直流至500 MHz均方根-直流转换器
直流耦合VCA应用
如果无法排除AD834的直流响应,由于高速运算放大器共模范围通常不足,必须使用某一形式的无源或有源电平转换。以下应用显示了塑封电感器在宽带电压控制放大器方案中使用有源或无源电平转换电路的情形。
使用无源电平转换的直流至60 MHz电压控制放大器图7显示了使用无源网络作为电平转换器的电路示意图。
此处选择的运算放大器为AD5539.
图7. 使用无源电平转换的直流至60 MHz电压控制放大器
AD5539使用与AD834相同的工艺构建,在高闭环增益下提供2 GHz的增益带宽积。与大多数运算放大器不同,AD5539拥有接地引脚和全NPN输出级,以"A类"方式工作以实现器件的高速度(参见图8)。更细致的考察显示,输出节点与输入间以及这些电压与地之间存在有限的"裕量".AD5539的高速度和其他非常规属性在使用时需要特别小心。
图8. ADS539运算放大器原理示意图
首先考虑A类输出级的后果。大多数运算放大器中,负载上的输出既可"上拉"也可"下拉",但NPN发射极-跟随器输出级只能上拉。AD5539具有2 k的内部下拉电阻(R11),仅可供应2或3毫安的电流。通用高速乘法器摆幅至少必须能够达到±1 V,同时驱动最低50 的负载电阻。在此输出电平下,负载电流为±20 mA,因此必须通过外部下拉电阻供应。事实上,下拉电流必须远大于该值,且需要仔细考虑。平面变压器厂家 | 平面电感厂家
基于ATmega64云台板卡测试平台的设计0引言随着国民经济的发展和经济全球化进程的加快,中国安防产业尽管起步比较晚,但是发展迅速,应用范围逐年扩大;云台是安防行业的一种最典型产品,是安装、固定摄像机的设备,分为固定云台和电动云台两种。固定云
推荐在锂电池充电管理芯片!目前有一款充电机,29.4V/10A,有什么充电管理芯片可以推荐吗?
这种管理芯片的工作原理是,做一款29.4V,10A的电源后面接管理芯片吗?
锂电池的充电器(小型),一般不需要专用的
[变压器]关于变压器功率选择问题我有两个3.3V的负载,电流大概是20MA和100MA,总功率0.396w。 用变压器220V转9V,用LM1117来9V转3.3V在选取变压器功率的时候,是比0.396W稍大些,还是需要考虑电流0.12A*9=1.08w,其中0.396w是负载所用,剩余是LDO的发热损耗。 请问变压的功率该如何选择。 满意回复+5lyjian 查看完整内容0.12A*9=1.08w+5maychang 查看完整内容理论上比1.0