微功耗清洁能源存贮系统
1传统能源存贮系统
传统贮能系统中,DC/DC、AC/DC、DC/AC三种功率变换器都采用PWM脉宽调制技术,无论是电能存贮侧充电功率的获得,还是电能释放侧的并网功率的获得,都采用PWM脉宽调制,电路拓朴有桥式、半桥式、推挽式、正激式、反激式等等,还有Boost、Buck、Cuk等电路形式。其工作方式是,首先把输入直流电压全部变换成高频方波,然后用大电容滤波,变成另一种直流或交流电压。这种方法有以下弊端:
⑴ 采用脉宽调制的方法,高频率、大功率方波的产生过程,也就是强烈EMI干扰产生的过程,大功率直流变换器相当于一个高频功率发射台,可以想见,所产生的干扰何其严重。
⑵ 功率变换过程中,输入功率的全部必须进行实际的功率变换,所有变换的功率必须通过磁芯变压器或电感传递才能到达输出端,损耗大,效率低。
图1是传统能源存贮系统框图,两侧功率总损耗接近30%,对于清洁能源来说,比如光伏发电,其效率本来就很低,好不容易花大成本把太阳能变换成电能,却让电能存贮系统两侧的功率变换器白白浪费了这么多,实在可惜。
2 微功耗清洁能源存贮系统
图1是微功耗清洁能源存贮系统的原理框图,由3部份组成:充电侧的微功耗充电、蓄电池、并网侧的微功耗逆变。微功耗充电包括:产生恒流恒压的直流稳压器、功率因数校正器、无损充电等。微功耗逆变包括:单相或三相逆变器。
在充电侧,可接受来自电网谷电、风力发电的交流电压,也可以接受来自太阳能发电、潮汐发电、地热发电的直流电压。对于交流电压,首先要进行功率因数校正,对于直流电压,要获得恒流、恒压充电功率;在并网侧,要进行单相或三相逆变,由直流变换到交流,然后并入电网;蓄电池可以是锂离子动力蓄电池、千网水平蓄电池、普通铅酸蓄电池、其他类型蓄电池。
图1 微功耗清洁能源存贮系统框图
微功耗充电,可以接受交流电压,也可以接受直流电压。如果输入交流电压,进入功率因数校正器,如果输入直流电压,进入直流稳压器,产生恒流恒压充电功率。无论输入的是交流电压还是直流电压,都采用无损充电方式。在并网侧,对于单相交流输出,有一个单相直流逆变器,对于三相交流输出,有一个三相直流逆变器。
3直流稳压器
图2是直流稳压器原理电路。设输入电压Vi=10.5V,要求输出电压Vo=12V,该电路产生一个补偿电压Vc=1.5V,叠加在输入电压之上,使叠层片式电感器得输出电压等于12V。V2一体电感器是功率MOS管Q2的栅极100kHz的方波驱动信号,V1是输入直流电压。电路启动后电感生产,Q2饱和导通,电池电压V1通过Q2的共模电感漏源极向电感L1充电,电感电流线性增加,电感中存贮的能量不断增多。与此同时,电容C2上的电压向负载R2放电。半个周期后,Q2截止,存贮在电感L1中的电能通过Q1的体内二极管向电容C1充电。C1上的电压叠加在电池电压V1之上,在向负载电阻R2供电的同时,也向电容C2充电。图2右边是各点电压的仿真波形,从上到下依次是:输出电压Vo、输入电压Vi、补偿电压Vc。从图可以看到,输出电压Vo(12V)是输入电压Vi(10.5V)和补偿电压Vc(1.5V)工字电感器之和。
图2 直流稳压器原理电路
功率MOS管Q1没有驱动信号,只利用功率MOS管Q1体内二极管的正向特性,其饱和压降小,通过电流大。
与传统直流功率变换不同的是,在这儿并不是不问青红皂白地行把输入电压全部变换成方波电压,而是根据情况,只把输入电压中的极小部份变换成方波电压。例如:输入电压是10.5V,输出电压是12V,应该在10.5V的输入电压之上补偿1.5V。因此,仅仅只须把这应该补偿的1.5V变换成方波电压即可。图2右边是各点电压的仿真波形,从上到下依次是:输出电压Vo,输入电压Vi,补偿电压Vc 。
图3是引入UC1825的直流稳压器实用电路,在控制芯片UC1825的右边电路与图2完全一样,只是Q1的栅极驱动信号V2换成了UC1825输出信号OUT_A,当负载或输入电压变化时,由UC1825调节脉宽,保持输出电压Vo不变。平面变压器厂家 | 平面电感厂家
三极管直接驱动电磁阀用这个三极管可以直接驱动12V的电磁阀不?
三极管用的S8050,电磁阀12V,电阻32Ω,正常驱动电流在380ma左右。
接通后电磁阀两端只有7V左右的电压,三极管CE有了剩余的电压,
自动化测试在动态文档发布系统中的应用摘要:文章首先介绍了动态文档发布系统,然后为了达到保证文档保真度不因系统升级而降低的目的,提出了一种轻量级的自动化测试框架,它能够对该系统进行自动化测试。然后,根据对该自动测试框架的要求,结合对实际系
锂电池充电电路mos管的作用Mos管充电电路的作用
不太明白你所说的,是指锂电池充电电路(一般是Buck)中的开关mos,还是指锂电池中保护板的充放电保护mos?
你所说的MOS管在电路中的