基于DSP的伺服运动控制器研究
2.2 控制卡通讯及接口
早期PC机通过ISA总线实现对电机的控制,但响应速度慢,实时可调电感性差,插件电感后来的PCI局部总线,解决了ISA的传输速度慢等问题。近几年通用串行总线USB(Universal Serial Bus)以其较快的传输速率和支持热插拔等诸多优点而受到用户的广泛受青睐。得到了许多硬件和软件厂商的支持。USB 2.0接口的最高传输速率由12Mb/s提高到了480Mb/s,能够更好地支持数据实时传输。把USB引入运动控制器,实现了运动控制器的热插拔,解决了计算机接口资源有限等问题,满足了多轴运动控制卡对数据实时通讯的需要。为提高运动控制器硬件上的开放性,开发了通用的接口卡,辅助完成基板与外部的通讯。除了进行反电感器生产馈信号等的必要传输外,还提供了电机的限位、回零、报警、伺服使能等信号和通用I/O各8路。为防止外界信号干扰,保证控制器的可靠性和安全性,输入输出信号都经由TLP521进行光电隔离。
3 速度、加速度前馈PID控制算法
本控制器采用典型的三环调节,其中速度调节器和电流调节器的功能由伺服电机驱动器完成,电流环用来提高系统的动态响应指标,增强系统抗干扰能力;速度环用于调节伺服电机的转速。位置闭环调节原理框图如图2所示,它包括位置PID调节和速度、加速度前馈,由运动控制器底层程序完成,用于实现精确定位、回零等,输出饱和控制可保证输出电压不会超过设定范围。
图2 伺服电机位置环系统结构图
位置环的计算公式为:
其中En为第n个采样时刻的位置误差;Ptarget为第n个采样时刻的累积误差值;Vt为当前目标速度;Kvff为速度前馈增益;At为当前目标加速度;Kvff为加速度前馈增益;Kp、Ki、Kd分别为比例贴片电感、微分和积分增益。
4 Matlab仿真及结果分析
基于KLD-200二维数控平台进行仿真。平台由两个Panasonic公司的MSMA012A 1E伺服电机及配套的MSDA013A1A驱动器进行控制。电机最高转速为3000RPM,功率1 00W,增量式编码器,2500P/r,丝杠导程为4mm/r。取Kp=100、Ki=12、Kd=2进行仿真。Y轴电机速度曲线与余弦曲线类似,跟随误差曲线如图3所示。无前馈情况下电机跟随误差从开始的63个脉冲在0.137秒后上升到114个脉冲,随后作类似余弦曲线的变化。引入前馈后,跟随误差从开始的63个脉冲迅速上升到109个脉冲,然后逐渐下降,在大约0.2秒后稳定在±2个脉冲之间。可见,速度和加速度前馈大大减小了系统的跟随误差。利用自己开发的运动控制器对数控平台反复进行控制实验,效果良好。梯形曲线控制实验中,设定加速度为10rev/s2,目标速度300RPM,位移120mm。到达目标速度后,驱动器显示的电机速度波动范围在±2RPM之间。利用VC的OnTimer()函数实时获取位置信息并进行显示,可以看出,到位后的最大超调量约为5~10个脉冲,稳态误差在±2个脉冲之内,小于1mm。
图3 跟随误差比较
5 结束语
本运动控制采用基于DSP和CPLD的硬件方案充分发挥工字电感器了DSP芯片实时高效的处理能力,系统设计合理,可以实现变传动比的电子齿轮和多轴插补功能。控制器采用了基于速度和加速度前馈的PID调节和NURBS插补等先进理论,实验和仿真结果表明,该运动控制器实时性好,控制精确度高,跟随误差小,理论跟随误差小于2个脉冲,位置控制误差小于1mm,可以满足高速高精度加工的要求。
平面变压器厂家 | 平面电感厂家基于超级电容器储能的直流DVR装置设计与实现摘 要:电压暂降是电力系统中危害最大的电能质量问题之一。针对电压暂降问题,文章提出了基于超级电容的直流动态电压恢复器(Dynamic Voltage Restorer, DVR)装置,完成了该装置的主
24V直流系统,在电源输入端串入共模电感,共模.电感24V直流系统,由于要过EMC,在电源输入端串入了一个15mh的共模电感。由于系统电流最高时有4A,共模电感共模地线端前后有电势差,导致某些以共模电感前的地为参考的AD采集和IO输入电
电源的种类详解1. 电力电子技术的发展现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其