隔离式电子变压器的半波整流电路设计
一、电路原理
图是隔离式电子变压器的半波整流电路(本电路降压比N为5,输入交流220V,输出直流约为44V)原理图。该电路是由充放电(串联充电,并联放电)电路、电子开关电路、隔离电路(交流电网与负载电路的隔离)等组成。该电路的电子开关电路随着交流电的周期,把充放电电路交替转换成串联充电与并联放电电路。即让电路的充电电路与放电电路,分别交替工作于交流电的正半周和负半周。其工作原理:当交流电压正半周时,电流流经Ro、D1、C1、D2、C2、D3、C3、D4、C4、D5、C5、D6形成串联回路,对电容Cl-C5进行串联式充贴片电感电。此时二极管D11~D20不导通(这是因为没有形成回路,所以D11~D20没有电流流过,共模电感器可视为不导通)。若C1~C5每个电容器容量相等,则每个电容器上的电压等于1/5输入交流电压(二极管D1~D6正向压降相对输出电压很小而忽略).即交流电压220V÷5=44V,其等效电路可画成如下图。
利用此法,可使输入交流1/N分压整流充电。同时当输入的交流电压为正半周时,对二极管D8反向连接呈截止状态,然而光电耦合器IC(GH1122Z)、达林顿电路的晶体管T2、T1、可控硅S1等。也都进入截止状态,使该电路的充电电路部分与后面的负载供电电路可靠隔离。
当输入交流电压为负半周时,由于D1和D6对输入交流负半周呈反向连接,故D1和D6被截止,即输入电源与充放电电路自然被隔离。这时D2~D5也由于C1~C5的反电压变成不导通。而二极管D8与光电耦合器IC内的LED处于正向连接导通,故光电耦合器内的光敏三极管被饱和导通。随即,T2、T1也饱和导通,这使电功率电感路中与C1~C5连接的上下二极管D11~D20与负载形成等效(如图3所示)的五组并联放电回路,则电阻R6上电流触发可控硅S1的控制极,使可控硅S1导通,成为完整的放电回路。
这样,当输入交流电压正半周时串联充电,负半周时并联放电。电路实现变压整流的功能。
二、主要元器件的选择原则
本电路所用二极管和电容数量节能灯电感器虽较多(除二极管D31),但流过二极管的平均电流仅为输出电流的1/N(A);电容器的耐压也仅为输入电压的1/N(V);T2、T1、S1满足电网电压的峰值和输出电流:光电耦合器IC内的光敏三大功率电感贴片电感器极管的集电极一发射极之间的击穿电压大于1/N(V)就可以(例如,本设计电路采用GHl122z);对电路中其他元件的参数要求也很低。
三、结束语
本电路只是半波整流电路。如果利用上述原理,将上面的电路做成两组(组件1+组件2),使组件1和组件2交替工作于交流电压的正半周和负半周:即当组件l串联充电状态时,组件2并联放电状态:当组件2串联充电状态时,组件1放电状态。则该电路将会更有应用价值。
平面变压器厂家 | 平面电感厂家航天器大功率DC-DC变换器热仿真分析随着电子技术的迅猛发展,电子设备的功率密度不断提高。高功率密度带来的高温对大多数电子元器件将产生严重的影响,它会导致电子元器件的失效,进而引起整个设备的失效。因此电子设备的热设计在整个产品的设计中占有
无源超高频RFID应答器的设计射频识别(RFID)技术的应用范围非常广。由于具有非触点和非视距的特性,RFID特别适用于供应链的管理。无源RFID在低频(125kHz)和高频(13.56MHz)市场上出现已经有一段时间了。在200
HPI在MCU和DSP接口中的应用描述HP I接口的工作原理及C8051F060和TMS320VC5409 (简称C5409)之间的接口电路设计,给出了HP I接口的软件设计。该系统具有设计灵活、数据传输速度快、适用于其他含有HP I