FPGA平台实现最小开关损耗的SVPWM算法
②减小开关电流iT。为了降低开关电流得到最小的开关损耗,需要使得在负载电流值最大时,对应的相桥臂没有开关动作。为了使得三相负载电流相对较大值区域都处于桥臂无开关动作状态,可以得到负载电流这一较大值区域是以正负峰值为中心的60°区域,即在这60°区域内,对应的桥臂应处于无开关动作状态。
负载电流的相位是由对称负载的功率因数角决定,如图4所示。若逆变器三相对称负载的功率因数角为δ(-π/2≤δ≤π/2),定义在扇区I和Ⅵ中零矢量放置区域的角平分线与矢量的夹角为α,逆变器三差模电感相对称负载的功率因数角为δ塑封电感器。如果α=δ,则可以使得以电流正负峰值为中心的60°区间正好落在桥臂没有开关动作扇区中。α和δ的关系为:
当-π/3≤α≤&p功率电感器i;/3,零矢量在空间矢量中的放置方式如下:
若α=30°,扇区I零矢量为;若α=-30°,扇区I零矢量为。当负载的功率因数角为0°时,α=0°,电压空间矢量被分为12个扇区,以为中心的30°区域的零矢量为,以为中心的30°区域的零矢量为,这样三相桥臂就分别有着连续的60°的常开和常闭区域,三相桥臂的切换时间如表2所列,其中:Ta=Tx/2,Tb=Ty/2,Tc=(Tx+Ty)/2,Td=(T-(Tx+Ty))/2,Te=Td+Ta=(T-Ty)/2,Tf=Td+ Tb=(T-Tx)/2。
这样就可以使得负载功率因数角为0°的三相电流波形的峰值落在桥臂没有开关动作的60°区域内,从而达到减小开关电流的目的。
3 Simulink仿真结果
根据前文所述理论,搭建Simulink仿真模型,三相逆变器的负载电阻R=5 Ω,负载电感L=0.5 mH,当逆变器的负载对称平衡时,功率因子约为0.999,此时α近似为0°,直流电压为690 V,调制比M=0.9,矢量空间被划分为12个扇区。Simulink仿真模型算法模块包括坐标变换模块、扇区判断模块、扇区时间选择模块、桥臂时间切换模块。
仿真结束后逆变器输出3相的电流波形见本刊网站www.mesnet.com.cn——编者注。三相之间电流相差120°,矢量空间被分为12个扇区,在以a相电流峰值为中心的60°区域中,调制波为1或0,即a相桥臂是没有开关动作的(常开或常闭)。仿真结果验证了前文的理论分析。
4 基于FPGA的实现及实验仿真结果
选择Altera CycloneⅡ系列EP2C8Q208为FPGA的硬件核心,实现环境是QuartusⅡ9.0,FPGA硬件描述语言采用Verilog HDL,仿真环境ModelSim PE 6.6b。如图5所示,三相调制波形相位与Simulnk仿真一致,调制波毛刺部分为FPGA内部逻辑延迟时间,小于FPGA所能识别的最小时间,对本系统的设计无影响。由图中三相桥臂的上开关的控制信号可知,桥臂在一个开关周期内有120°的区域是没有开关动作的(60°功率电感器;常开,60°常闭),因此系统的时序设计是正确可靠的,也验证了上述理论以及Simulink仿真的正确性。平面变压器厂家 | 平面电感厂家
分析M16C62在uC/OS-II嵌入式系统中的应用 随着微电子技术和网络的发展,人们对网络的认识日益深入。网络终端产品也越来越受到人们的关注,嵌入式操作系统的应用也得到了前所未有的发展,人们对嵌入式的研究也有了长足的进步。基于某个操作系统的实时、多任
如何避免传导EMI问题 大部分传导 EMI 问题都是由共模噪声引起的。而且,大部分共模噪声问题都是由电源中的寄生电容导致的。我们着重讨论当寄生电容直接耦合到电源输入电线时会发生的情况。1. 只需几 fF 的杂散电容就会导致
新颖小功率集成的AC-DC转换器方案介绍随着半导体技术的不断进步,为系统设计师、电路设计师实现技术创新提供了一个先进的技术平台,从而有许许多多新颖的、时尚的便携式电子产品呈现在世人面前,像PDA、3G手机、各种个人电子医疗保健装置以及层出不